The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

November 2012 - Volume 80 Issue 6 Page 2667 - 2732


p.2667


Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model

Søren Johansen
Morten Ørregaard Nielsen

Abstract

We consider model based inference in a fractionally cointegrated (or cofractional) vector autoregressive model, based on the Gaussian likelihood conditional on initial values. We give conditions on the parameters such that the process Xt is fractional of order d and cofractional of order d-b; that is, there exist vectors β for which β'Xt is fractional of order d-b and no other fractionality order is possible. For b=1, the model nests the I(d-1) vector autoregressive model. We define the statistical model by 0 < bd, but conduct inference when the true values satisfy 0d0-b0<1/2 and b0≠1/2, for which β0'Xt is (asymptotically) a stationary process. Our main technical contribution is the proof of consistency of the maximum likelihood estimators. To this end, we prove weak convergence of the conditional likelihood as a continuous stochastic process in the parameters when errors are independent and identically distributed with suitable moment conditions and initial values are bounded. Because the limit is deterministic, this implies uniform convergence in probability of the conditional likelihood function. If the true value b0>1/2, we prove that the limit distribution of is mixed Gaussian, while for the remaining parameters it is Gaussian. The limit distribution of the likelihood ratio test for cointegration rank is a functional of fractional Brownian motion of type II. If b0<1/2, all limit distributions are Gaussian or chi-squared. We derive similar results for the model with d = b, allowing for a constant term.


Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.