The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

November 2012 - Volume 80 Issue 6 Page 2595 - 2647


p.2595


Information Aggregation in Dynamic Markets With Strategic Traders

Michael Ostrovsky

Abstract

This paper studies information aggregation in dynamic markets with a finite number of partially informed strategic traders. It shows that, for a broad class of securities, information in such markets always gets aggregated. Trading takes place in a bounded time interval, and in every equilibrium, as time approaches the end of the interval, the market price of a "separable“ security converges in probability to its expected value conditional on the traders' pooled information. If the security is "non-separable,“ then there exists a common prior over the states of the world and an equilibrium such that information does not get aggregated. The class of separable securities includes, among others, Arrow–Debreu securities, whose value is 1 in one state of the world and 0 in all others, and "additive“ securities, whose value can be interpreted as the sum of traders' signals.


Full content Login                                    
View supplemental material

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.