The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

March 2010 - Volume 78 Issue 2 Page 697 - 718


p.697


Constructing Optimal Instruments by First-Stage Prediction Averaging

Guido Kuersteiner
Ryo Okui

Abstract

This paper considers model averaging as a way to construct optimal instruments for the two-stage least squares (2SLS), limited information maximum likelihood (LIML), and Fuller estimators in the presence of many instruments. We propose averaging across least squares predictions of the endogenous variables obtained from many different choices of instruments and then use the average predicted value of the endogenous variables in the estimation stage. The weights for averaging are chosen to minimize the asymptotic mean squared error of the model averaging version of the 2SLS, LIML, or Fuller estimator. This can be done by solving a standard quadratic programming problem.


Full content Login                                    
View supplemental material

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.