The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

January 2009 - Volume 77 Issue 1 Page 107 - 133


p.107


Decision Theory Applied to a Linear Panel Data Model

Gary Chamberlain
Marcelo J. Moreira

Abstract

This paper applies some general concepts in decision theory to a linear panel data model. A simple version of the model is an autoregression with a separate intercept for each unit in the cross section, with errors that are independent and identically distributed with a normal distribution. There is a parameter of interest γ and a nuisance parameter τ, a N×K matrix, where N is the cross-section sample size. The focus is on dealing with the incidental parameters problem created by a potentially high-dimension nuisance parameter. We adopt a "fixed-effects" approach that seeks to protect against any sequence of incidental parameters. We transform τ to (δ, ρ, ω), where δ is a J×K matrix of coefficients from the least-squares projection of τ on a N×J matrix x of strictly exogenous variables, ρ is a K×K symmetric, positive semidefinite matrix obtained from the residual sums of squares and cross-products in the projection of τ on x, and ω is a (N-J) ×K matrix whose columns are orthogonal and have unit length. The model is invariant under the actions of a group on the sample space and the parameter space, and we find a maximal invariant statistic. The distribution of the maximal invariant statistic does not depend upon ω. There is a unique invariant distribution for ω. We use this invariant distribution as a prior distribution to obtain an integrated likelihood function. It depends upon the observation only through the maximal invariant statistic. We use the maximal invariant statistic to construct a marginal likelihood function, so we can eliminate ω by integration with respect to the invariant prior distribution or by working with the marginal likelihood function. The two approaches coincide.

Decision rules based on the invariant distribution for ω have a minimax property. Given a loss function that does not depend upon ω and given a prior distribution for (γ, δ, ρ), we show how to minimize the average—with respect to the prior distribution for (γ, δ, ρ)—of the maximum risk, where the maximum is with respect to ω.

There is a family of prior distributions for (δ, ρ) that leads to a simple closed form for the integrated likelihood function. This integrated likelihood function coincides with the likelihood function for a normal, correlated random-effects model. Under random sampling, the corresponding quasi maximum likelihood estimator is consistent for γ as N®¥, with a standard limiting distribution. The limit results do not require normality or homoskedasticity (conditional on x) assumptions.


Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.