The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

September 2008 - Volume 76 Issue 5 Page 1207 - 1217


p.1207


Comment on: Threshold Autoregressions With a Unit Root

Jean-Yves Pitarakis

Abstract

In this paper we revisit the results in Caner and Hansen (2001), where the authors obtained novel limiting distributions of Wald type test statistics for testing for the presence of threshold nonlinearities in autoregressive models containing unit roots. Using the same framework, we obtain a new formulation of the limiting distribution of the Wald statistic for testing for threshold effects, correcting an expression that appeared in the main theorem presented by Caner and Hansen. Subsequently, we show that under a particular scenario that excludes stationary regressors such as lagged dependent variables and despite the presence of a unit root, this same limiting random variable takes a familiar form that is free of nuisance parameters and already tabulated in the literature, thus removing the need to use bootstrap based inferences. This is a novel and unusual occurrence in this literature on testing for the presence of nonlinear dynamics.

Full content Login                                     View original article

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.