The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 2008 - Volume 76 Issue 4 Page 909 - 933


p.909


Common Learning

Martin W. Cripps
Jeffrey C. Ely
George J. Mailath
Larry Samuelson

Abstract

Consider two agents who learn the value of an unknown parameter by observing a sequence of private signals. The signals are independent and identically distributed across time but not necessarily across agents. We show that when each agent's signal space is finite, the agents will commonly learn the value of the parameter, that is, that the true value of the parameter will become approximate common knowledge. The essential step in this argument is to express the expectation of one agent's signals, conditional on those of the other agent, in terms of a Markov chain. This allows us to invoke a contraction mapping principle ensuring that if one agent's signals are close to those expected under a particular value of the parameter, then that agent expects the other agent's signals to be even closer to those expected under the parameter value. In contrast, if the agents' observations come from a countably infinite signal space, then this contraction mapping property fails. We show by example that common learning can fail in this case.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.