The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 2007 - Volume 75 Issue 4 Page 1175 - 1189


p.1175


Least Squares Model Averaging

Bruce E. Hansen

Abstract

This paper considers the problem of selection of weights for averaging across least squares estimates obtained from a set of models. Existing model average methods are based on exponential Akaike information criterion (AIC) and Bayesian information criterion (BIC) weights. In distinction, this paper proposes selecting the weights by minimizing a Mallows criterion, the latter an estimate of the average squared error from the model average fit. We show that our new Mallows model average (MMA) estimator is asymptotically optimal in the sense of achieving the lowest possible squared error in a class of discrete model average estimators. In a simulation experiment we show that the MMA estimator compares favorably with those based on AIC and BIC weights. The proof of the main result is an application of the work of Li (1987).

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.