The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 2005 - Volume 73 Issue 4 Page 1351 - 1365


p.1351


Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments

Mohamed Taamouti
Jean-Marie Dufour

Abstract

It is well known that standard asymptotic theory is not applicable or is very unreliable in models with identification problems or weak instruments. One possible way out consists of using a variant of the Anderson–Rubin ((1949), AR) procedure. The latter allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, but not for individual coefficients. This problem may in principle be overcome by using projection methods (Dufour (1997), Dufour and Jasiak (2001)). At first sight, however, this technique requires the application of costly numerical algorithms. In this paper, we give a general necessary and sufficient condition that allows one to check whether an AR-type confidence set is bounded. Furthermore, we provide an analytic solution to the problem of building projection-based confidence sets from AR-type confidence sets. The latter involves the geometric properties of "quadrics" and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are needed to build the confidence intervals.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.