The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

May 2005 - Volume 73 Issue 3 Page 771 - 836


p.771


Estimating Semiparametric ARCH(‡) Models by Kernel Smoothing Methods

E. Mammen
O. Linton

Abstract

We investigate a class of semiparametric ARCH(‡) models that includes as a special case the partially nonparametric (PNP) model introduced by Engle and Ng (1993) and which allows for both flexible dynamics and flexible function form with regard to the "news impact" function. We show that the functional part of the model satisfies a type II linear integral equation and give simple conditions under which there is a unique solution. We propose an estimation method that is based on kernel smoothing and profiled likelihood. We establish the distribution theory of the parametric components and the pointwise distribution of the nonparametric component of the model. We also discuss efficiency of both the parametric part and the nonparametric part. We investigate the performance of our procedures on simulated data and on a sample of S&P500 index returns. We find evidence of asymmetric news impact functions, consistent with the parametric analysis.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.