The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

September 2004 - Volume 72 Issue 5 Page 1565 - 1581


p.1565


Social Indeterminacy

Gil Kalai

Abstract

An extension of Condorcet's paradox by McGarvey (1953) asserts that for every asymmetric relation R on a finite set of candidates there is a strict-preferences voter profile that has the relation R as its strict simple majority relation. We prove that McGarvey's theorem can be extended to arbitrary neutral monotone social welfare functions that can be described by a strong simple game G if the voting power of each individual, measured by the Shapley–Shubik power index, is sufficiently small. Our proof is based on an extension to another classic result concerning the majority rule. Condorcet studied an election between two candidates in which the voters' choices are random and independent and the probability of a voter choosing the first candidate is p>1/2. Condorcet's jury theorem asserts that if the number of voters tends to infinity then the probability that the first candidate will be elected tends to one. We prove that this assertion extends to a sequence of arbitrary monotone strong simple games if and only if the maximum voting power for all individuals tends to zero.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.