The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 2004 - Volume 72 Issue 4 Page 1277 - 1293


p.1277


Efficient Semiparametric Estimation of Censored and Truncated Regressions via a Smoothed Self-Consistency Equation

Stephen R. Cosslett

Abstract

An asymptotically efficient likelihood-based semiparametric estimator is derived for the censored regression (tobit) model, based on a new approach for estimating the density function of the residuals in a partially observed regression. Smoothing the self-consistency equation for the nonparametric maximum likelihood estimator of the distribution of the residuals yields an integral equation, which in some cases can be solved explicitly. The resulting estimated density is smooth enough to be used in a practical implementation of the profile likelihood estimator, but is sufficiently close to the nonparametric maximum likelihood estimator to allow estimation of the semiparametric efficient score. The parameter estimates obtained by solving the estimated score equations are then asymptotically efficient. A summary of analogous results for truncated regression is also given.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.