The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 2004 - Volume 72 Issue 4 Page 1221 - 1246


p.1221


Statistical Treatment Rules for Heterogeneous Populations

Charles F. Manski

Abstract

An important objective of empirical research on treatment response is to provide decision makers with information useful in choosing treatments. This paper studies minimax-regret treatment choice using the sample data generated by a classical randomized experiment. Consider a utilitarian social planner who must choose among the feasible statistical treatment rules, these being functions that map the sample data and observed covariates of population members into a treatment allocation. If the planner knew the population distribution of treatment response, the optimal treatment rule would maximize mean welfare conditional on all observed covariates. The appropriate use of covariate information is a more subtle matter when only sample data on treatment response are available. I consider the class of conditional empirical success rules; that is, rules assigning persons to treatments that yield the best experimental outcomes conditional on alternative subsets of the observed covariates. I derive a closed-form bound on the maximum regret of any such rule. Comparison of the bounds for rules that condition on smaller and larger subsets of the covariates yields sufficient sample sizes for productive use of covariate information. When the available sample size exceeds the sufficiency boundary, a planner can be certain that conditioning treatment choice on more covariates is preferable (in terms of minimax regret) to conditioning on fewer covariates.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.