The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

March 2004 - Volume 72 Issue 2 Page 569 - 614


p.569


Adaptive Local Polynomial Whittle Estimation of Long-range Dependence

Donald W. K. Andrews
Yixiao Sun

Abstract

The local Whittle (or Gaussian semiparametric) estimator of long range dependence, proposed by Künsch (1987) and analyzed by Robinson (1995a), has a relatively slow rate of convergence and a finite sample bias that can be large. In this paper, we generalize the local Whittle estimator to circumvent these problems. Instead of approximating the short-run component of the spectrum, ϕ(λ), by a constant in a shrinking neighborhood of frequency zero, we approximate its logarithm by a polynomial. This leads to a "local polynomial Whittle" (LPW) estimator. We specify a data-dependent adaptive procedure that adjusts the degree of the polynomial to the smoothness of ϕ(λ) at zero and selects the bandwidth. The resulting "adaptive LPW" estimator is shown to achieve the optimal rate of convergence, which depends on the smoothness of ϕ(λ) at zero, up to a logarithmic factor.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.