|
p.1963
|
A Fractional DickeyFuller Test for Unit Roots
Juan J. Dolado
Jesú:s Gonzalo
Laura Mayoral
Abstract
This paper presents a new test for fractionally integrated (FI) processes. In particular, we propose a testing procedure in the time domain that extends the wellknown DickeyFuller approach, originally designed for the I(1) versus I(0) case, to the more general setup of FI(d0) versus FI(d1), with d1<d0. When d0=1, the proposed test statistics are based on the OLS estimator, or its tratio, of the coefficient on ?d1yt−1 in a regression of ?yt on ?d1yt−1 and, possibly, some lags of ?yt. When d1 is not taken to be known a priori, a preestimation of d1 is needed to implement the test. We show that the choice of any T1/2consistent estimator of d1∈[0 ,1) suffices to make the test feasible, while achieving asymptotic normality. MonteCarlo simulations support the analytical results derived in the paper and show that proposed tests fare very well, both in terms of power and size, when compared with others available in the literature. The paper ends with two empirical applications.
|