|
Adapting to Unknown Disturbance Autocorrelation in Regression with Long Memory
Javier Hidalgo
Peter M. Robinson
Abstract
We show that it is possible to adapt to nonparametric disturbance autocorrelation in time series regression in the presence of long memory in both regressors and disturbances by using a smoothed nonparametric spectrum estimate in frequencydomain generalized least squares. When the collective memory in regressors and disturbances is sufficiently strong, ordinary least squares is not only asymptotically inefficient but asymptotically nonnormal and has a slow rate of convergence, whereas generalized least squares is asymptotically normal and GaussMarkov efficient with standard convergence rate. Despite the anomalous behavior of nonparametric spectrum estimates near a spectral pole, we are able to justify a standard construction of frequencydomain generalized least squares, earlier considered in case of short memory disturbances. A small Monte Carlo study of finite sample performance is included.
|