The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 2001 - Volume 69 Issue 4 Page 995 - 1012


p.995


Necessity of Transversality Conditions for Infinite Horizon Problems

Takashi Kamihigashi

Abstract

This paper studies necessity of transversality conditions for the continuous time, reduced form model. By generalizing Benveniste and Scheinkman’s (1982) “envelope” condition and Michel’s (1990) version of the squeezing argument, we show a generalization of Michel’s (1990, Theorem 1) necessity result that does not assume concavity. The generalization enables us to generalize Ekeland and Scheinkman’s (1986) result as well as to establish a new result that does not require the objective functional to be finite. The new result implies that homogeneity of the return function alone is sufficient for the necessity of the most standard transversality condition. Our results are also applied to a nonstationary version of the one-sector growth model. It is shown that bubbles never arise in an equilibrium asset pricing model with a nonlinear constraint.


Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.