The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

May 2001 - Volume 69 Issue 3 Page 599 - 631


p.599


An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative

Joel L. Horowitz
Vladimir G. Spokoiny

Abstract

We develop a new test of a parametric model of a conditional mean function against a nonparametric alternative. The test adapts to the unknown smoothness of the alternative model and is uniformly consistent against alternatives whose distance from the parametric model converges to zero at the fastest possible rate. This rate is slower than n−1/2. Some existing tests have nontrivial power against restricted classes of alternatives whose distance from the parametric model decreases at the rate n−1/2. There are, however, sequences of alternatives against which these tests are inconsistent and ours is consistent. As a consequence, there are alternative models for which the finite-sample power of our test greatly exceeds that of existing tests. This conclusion is illustrated by the results of some Monte Carlo experiments.


Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.