The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

January 2001 - Volume 69 Issue 1 Page 191 - 200


p.191


A Folk Theorem for Asynchronously Repeated Games

Kiho Yoon

Abstract

We prove a Folk Theorem for asynchronously repeated games in which the set of players who can move in period t, denoted by It, is a random variable whose distribution is a function of the past action choices of the players and the past realizations of Iτ’s, τ=1, 2,…,t−1. We impose a condition, the finite periods of inaction (FPI) condition, which requires that the number of periods in which every player has at least one opportunity to move is bounded. Given the FPI condition together with the standard nonequivalent utilities (NEU) condition, we show that every feasible and strictly individually rational payoff vector can be supported as a subgame perfect equilibrium outcome of an asynchronously repeated game.


Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.