The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 1999 - Volume 67 Issue 4 Page 875 - 893


p.875


Bayesian Representation of Stochastic Processes under Learning: de Finetti Revisited

Matthew O. Jackson
Ehud Kalai
Rann Smorodinsky

Abstract

A probability distribution governing the evolution of a stochastic process has infinitely many Bayesian representations of the form µ = ∫?µ?d&lgr;(?). Among these, a natural representation is one whose components ( µ?’s) are ‘learnable’ (one can approximate µ? by conditioning μ on observation of the process) and ‘sufficient for prediction’ (µ?’s predictions are not aided by conditioning on observation of the process). We show the existence and uniqueness of such a representation under a suitable asymptotic mixing condition on the process. This representation can be obtained by conditioning on the tail-field of the process, and any learnable representation that is sufficient for prediction is asymptotically like the tail-field representation. This result is related to the celebrated de Finetti theorem, but with exchangeability weakened to an asymptotic mixing condition, and with his conclusion of a decomposition into i.i.d. component distributions weakened to components that are learnable and sufficient for prediction.


Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.