The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

March 1999 - Volume 67 Issue 2 Page 393 - 412


p.393


Repeated Games with Differential Time Preferences

Ehud Lehrer
Ady Pauzner

Abstract

When players have identical time preferences, the set of feasible repeated game payoffs coincides with the convex hull of the underlying stage- game payoffs. Moreover, all feasible and individually rational payoffs can be sustained by equilibria if the players are sufficiently patient. Neither of these facts generalizes to the case of different time preferences. First, players can mutually benefit from trading payoffs across time. Hence, the set of feasible repeated game payoffs is typically larger than the convex hull of the underlying stage-game payoffs. Second, it is not usually the case that every trade plan that guarantees individually rational payoffs can be sustained by an equilibrium, no matter how patient the players are. This paper provides a simple characterization of the sets of Nash and of subgame perfect equilibrium payoffs in two-player repeated games.


Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.