The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

January 1999 - Volume 67 Issue 1 Page 45 - 64


p.45


Cooperation in Repeated Games When the Number of Stages is not Commonly Known

Abraham Neyman

Abstract

It is shown that an exponentially small departure from the common knowledge assumption on the number T of repetitions of the prisoners’ dilemma already enables cooperation. More generally, with such a departure, any feasible individually rational outcome of any one-shot game can be approximated by a subgame perfect equilibrium of a finitely repeated version of that game.

The sense in which the departure from common knowledge is small is as follows: (I) With probability one, the players know T with precision ±K. (ii) With probability 1 − s, the players know T precisely; moreover, this knowledge is mutual of order sT. (iii) The deviation of T from its finite expectation is exponentially small.


Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.