The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

November 1997 - Volume 65 Issue 6 Page 1365 - 1387


p.1365


Some Impossibility Theorems in Econometrics With Applications to Structural and Dynamic Models

Jean-Marie Dufour

Abstract

General characterizations of valid confidence sets and tests in problems which involve locally almost unidentified (LAU) parameters are provided and applied to several econometric models. Two types of inference problems are studied: (i) inference about parameters which are not identifiable on certain subsets of the parameter space, and (ii) inference about parameter transformations with discontinuities. When a LAU parameter or parametric function has an unbounded range, it is shown under general regularity conditions that any valid confidence set with level $1 - \alpha$ for this parameter must be unbounded with probability close to $1 - \alpha$ in the neighborhood of nonidentification subsets and will have a nonzero probability of being unbounded under any distribution compatible with the model: no valid confidence set which is almost surely bounded does exist. These properties hold even if "identifying restrictions" are imposed. Similar results also obtain for parameters with bounded ranges. Consequently, a confidence set which does not satisfy this characterization has zero coverage probability (level). This will be the case in particular for Wald-type confidence intervals based on asymptotic standard errors. Furthermore, Wald-type statistics for testing given values of a LAU parameter cannot be pivotal functions (i.e., they have distributions which depend on unknown nuisance parameters) and even cannot be usefully bounded over the space of the nuisance parameters. These results are applied to several econometric problems: inference in simultaneous equations (instrumental variables (IV) regressions), linear regressions with autoregressive errors, inference about long-run multipliers and cointegrating vectors. For example, it is shown that standard "asymptotically justified" confidence intervals based on IV estimators (such as two-stage least squares) and the associated "standard errors" have zero coverage probability, and the corresponding $t$ statistics have distributions which cannot be bounded by any finite set of distribution functions, a result of interest for interpreting IV regressions with "weak instruments." Furthermore, expansion methods (e.g., Edgeworth expansions) and bootstrap techniques cannot solve these difficulties. Finally, in a number of cases where Wald-type methods are fundamentally flawed (e.g., IV regressions with poor instruments), it is observed that likelihood-based methods (e.g., likelihood-ratio tests and confidence sets) combined with projection techniques can easily yield valid tests and confidence sets.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.