The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

September 1997 - Volume 65 Issue 5 Page 1129 - 1151


p.1129


Asymptotic Theory of Integrated Conditional Moment Tests

Herman J. Bierens
Werner Ploberger

Abstract

In this paper we derive the asymptotic distribution of the test statistic of a generalized version of the integrated conditional moment (ICM) test of Bierens (1982, 1984), under a class of $\sqrt n$-local alternatives, where $n$ is the sample size. The generalized version involved includes neural network tests as a special case, and allows for testing misspecification of dynamic models. It appears that the ICM test has nontrivial local power. Moreover, for a class of "large" local alternatives the consistent ICM test is more powerful than the parametric $t$ test in a neighborhood of the parametric alternative involved. Furthermore, under the assumption of normal errors the ICM test is asymptotically admissible, in the sense that there does not exist a test that is uniformly more powerful. The asymptotic size of the test is case-dependent: the critical values of the test depend on the data-generating process. In this paper we derive case-independent upperbounds of the critical values.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.