The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

November 1996 - Volume 64 Issue 6 Page 1375 - 1393


p.1375


A Probabilistic Model of Learning in Games

Chris William Sanchirico

Abstract

This paper presents a new, probabilistic model of learning in games which investigates the often stated intuition that common knowledge of strategic intent may arise from repeated interaction. The model is set in the usual repeated game framework, but the two key assumptions are framed in terms of the likelihood of beliefs and actions conditional on the history of play. The first assumption formalizes the basic intuition of the learning approach; the second, the indeterminacy that inspired resort to learning models in the first place. Together the assumptions imply that, almost surely, play will remain almost always within one of the stage game's "minimal inclusive sets." In important classes of games, including those with strategic complementarities, potential functions, and bandwagon effects, all such sets are singleton Nash.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.