The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 1996 - Volume 64 Issue 4 Page 813 - 836


p.813


Efficient Tests for an Autoregressive Unit Root

Graham Elliott
Thomas J. Rothenberg
James H. Stock

Abstract

The asymptotic power envelope is derived for point-optimal tests of a unit root in the autoregressive representation of a Gaussian time series under various trend specifications. We propose a family of tests whose asymptotic power functions are tangent to the power envelope at one point and are never far below the envelope. When the series has no deterministic component, some previously proposed tests are shown to be asymptotically equivalent to members of this family. When the series has an unknown mean or linear trend, commonly used tests are found to be dominated by members of the family of point-optimal invariant tests. We propose a modified version of the Dickey-Fuller $t$ test which has substantially improved power when an unknown mean or trend is present. A Monte Carlo experiment indicates that the modified test works well in small samples.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.