The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

September 1995 - Volume 63 Issue 5 Page 1161 - 1180


p.1161


Epistemic Conditions for Nash Equilibrium

Robert Aumann
Adam Brandenburger

Abstract

Sufficient conditions for Nash equilibrium in an $n$-person game are given in terms of what the players know and believe--about the game, and about each other's rationality, actions, knowledge, and beliefs. Mixed strategies are treated not as conscious randomizations, but as conjectures, on the part of other players, as to what a player will do. Common knowledge plays a smaller role in characterizing Nash equilibrium than had been supposed. When $n = 2$, mutual knowledge of the payoff functions, of rationality, and of the conjectures implies that the conjectures form a Nash equilibrium. When $n \geq 3$ and there is a common prior, mutual knowledge of the payoff functions and of rationality, and common knowledge of the conjectures, imply that the conjectures form a Nash equilibrium. Examples show the results to be tight.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.