The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

September 1995 - Volume 63 Issue 5 Page 1023 - 1078


p.1023


Fully Modified Least Squares and Vector Autoregression

Peter C. B. Phillips

Abstract

Fully modified least squares (FM-OLS) regression was originally designed in work by Phillips and Hansen (1990) to provide optimal estimates of cointegrating regressions. The method modifies least squares to account for serial correlation effects and for the endogeneity in the regressors that results from the existence of a cointegrating relationship. This paper provides a general framework which makes it possible to study the asymptotic behavior of FM-OLS in models with full rank $I(1)$ regressors, models with $I(1)$ and $I(0)$ regressors, models with unit roots, and models with only stationary regressors. This framework enables us to consider the use of FM regression in the context of vector autoregressions (VAR's) with some unit roots and some cointegrating relations. The resulting FM-VAR regressions are shown to have some interesting properties. For example, when there is some cointegration in the system, FM-VAR estimation has a limit theory that is normal for all of the stationary coefficients and mixed normal for all of the nonstationary coefficients. Thus, there are no unit root limit distributions even in the case of the unit root coefficient submatrix (i.e., $I_{n - r}$, for an $n$-dimensional VAR with $r$ cointegrating vectors). Moreover, optimal estimation of the cointegration space is attained in FM-VAR regression without prior knowledge of the number of unit roots in the system, without pretesting to determine the dimension of the cointegration space and without the use of restricted regression techniques like reduced rank regression. The paper also develops an asymptotic theory for inference based on FM-OLS and FM-VAR regression. The limit theory for Wald tests that rely on the FM estimator is shown to involve a linear combination of independent chi-squared variates. This limit distribution is bounded above by the conventional chi-squared distribution with degrees of freedom equal to the number of restrictions. Thus, conventional critical values can be used to construct valid (but conservative) asymptotic tests in quite general FM time series regressions. This theory applies to causality testing in VAR's and is therefore potentially useful in empirical applications.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.