The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 1994 - Volume 62 Issue 4 Page 783 - 794


p.783


The Algebraic Geometry of Perfect and Sequential Equilibrium

Lawrence E. Blume
William R. Zame

Abstract

Two of the most important refinements of the Nash equilibrium concept for extensive form games with perfect recall are Selten's (1975) perfect equilibrium and Kreps and Wilson's (1982) more inclusive sequential equilibrium. These two equilibrium refinements are motivated in very different ways. Nonetheless, as Kreps and Wilson (1982, Section 7) point out, the two concepts lead to similar prescriptions for equilibrium play. For each particular game form, every perfect equilibrium is sequential. Moreover, for almost all assignments of payoffs to outcomes, almost all sequential equilibrium strategy profiles are perfect equilibrium profiles, and all sequential equilibrium outcomes are perfect equilibrium outcomes. We establish a stronger result: For almost all assignments of payoffs to outcomes, the sets of sequential and perfect equilibrium strategy profiles are identical. In other words, for almost all games each strategy profile which can be supported by beliefs satisfying the rationality requirement of sequential equilibrium can actually be supported by beliefs satisfying the stronger rationality requirement of perfect equilibrium. We obtain this result by exploiting the algebraic/geometric structure of these equilibrium correspondences, following from the fact that they are semi-algebraic sets; i.e., they are defined by finite systems of polynomial inequalities. That the perfect and sequential equilibrium correspondences have this semi-algebraic structure follows from a deep result from mathematical logic, the Tarski-Seidenberg Theorem; that this structure has important game-theoretic consequences follows from deep properties of semi-algebraic sets.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.