The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

May 1991 - Volume 59 Issue 3 Page 637 - 666


p.637


Evolutionary Games in Economics

Daniel Friedman

Abstract

Evolutionary games are introduced as models for repeated anonymous strategic interaction. The basic idea is that actions (or behaviors) which are more "fit," given the current distribution of behaviors, tend over time to displace less fit behaviors. Simple numerical examples motivate the key concepts of fitness function and compatible dynamics, and illustrate the relation to previous biological models. Cone fields are introduced to characterize the continuous-time dynamical processes compatible with a given fitness function. The analysis focuses on dynamic steady state equilibria and their relation to the static equilibria known as NE (Nash equilibrium) and ESS (evolutionary stable state). For large classes of dynamics it is shown that all stable dynamic steady states are NE and that all NE are dynamic steady states. The biologists' ESS condition is less closely related to the dynamic equilibria. The paper concludes with a brief survey of economic applications.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.