The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

March 1991 - Volume 59 Issue 2 Page 307 - 345


p.307


Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models

Donald W. K. Andrews

Abstract

This paper establishes the asymptotic normality of series estimators for nonparametric regression models. Polynomial series estimators, trigonometric series estimators, and Gallant's Fourier flexible form estimators are prime examples of the estimators covered by the results. The results apply to a wide variety of estimands in the regression model under consideration, including derivatives and integrals of the regression function. The errors in the model may be homoskedastic or heteroskedastic. The paper also considers series estimators for additive interactive regression (AIR), partially linear regression, and semiparametric index regression models and shows them to be consistent and asymptotically normal. All of the consistency and asymptotic normality results in the paper follow from one set of general results for series estimators.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.