The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

September 1990 - Volume 58 Issue 5 Page 1215 - 1234


p.1215


Asymptotic Likelihood-Based Prediction Functions

Thomas F. Cooley
William R. Parke

Abstract

This paper develops asymptotic prediction functions that approximate the shape of the density of future observations and correct for parameter uncertainty. The functions are based on extensions to a definition of predictive likelihood originally suggested by Lauritzen and Hinkley. The prediction function is shown to possess efficiency properties based on the Kullback-Leibler measure of information loss. Examples of the application of the prediction function and the derivation of relative efficiency are shown for linear normal models, nonnormal models, and ARCH models.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.