The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

March 1989 - Volume 57 Issue 2 Page 335 - 355


p.335


Nonlinear Hypotheses, Inequality Restrictions, and Non-Nested Hypotheses: Exact Simultaneous Tests in Linear Regressions

Jean-Marie Dufour

Abstract

In the context of the classical linear model, the problem of comparing two arbitrary hypotheses on the regression coefficients is considered. Problems involving nonlinear hypotheses, inequality restrictions, or non-nested hypotheses are included as special cases. Exact bounds on the null distribution of likelihood ratio statistics are derived. The bounds are based on the central Fisher distribution and are very easy to use. In an important special case, a bounds test similar to the Durbin-Watson test is proposed. Multiple testing problems are also studied: the bounds obtained for a single pair of hypotheses are shown to enjoy a simultaneity property that allows one to combine any number of tests. This result extends to nonlinear hypotheses a well-known result given by Scheffe for linear hypotheses. A method of building bounds induced tests is also suggested.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.