The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

May 1988 - Volume 56 Issue 3 Page 571 - 599


p.571


A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand Curves, and Edgeworth Cycles

Eric Maskin
Jean Tirole

Abstract

We provide game theoretic foundations for the classic kinked demand curve equilibrium and Edgeworth cycle. We analyze a model in which firms take turns choosing prices; the model is intended to capture the idea of reactions based on short-run commitment. In a Markov perfect equilibrium (MPE), a firm's move in any period depends only on the other firm's current price. There are multiple MPE's, consisting of both kinked demand curve equilibria and Edgeworth cycles. In any MPE, profit is bounded away from the Bertrand equilibrium level. We show that a kinked demand curve at the monopoly price is the unique symmetric "renegotiation proof" equilibrium when there is little discounting. We then endogenize the timing by allowing firms to move at any time subject to we short-run commitments. We find that firms end up alternating, thus vindicating the ad hoc timing assumption of our simpler model. We also discuss how the model can be enriched to provide explanations for excess capacity and market sharing.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.