The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

January 1988 - Volume 56 Issue 1 Page 119 - 145


p.119


The Student's t Approximation in a Stationary First Order Autoregressive Model

J. C. Nankervis
N. E. Savin

Abstract

The basic model is a Gaussian AR(1) model with an intercept, but no additional exogenous variables. The paper studies the distribution of the t statistic for testing the value of the autoregressive parameter when the model is estimated by least squares. The Monte Carlo estimates of the quantiles of the t statistic show that Student's t is not a satisfactory approximation for sample sizes typical in economic applications. The main problem is not the shape of the distribution of the t statistic, but its location. Adjusting the t statistic so that it has the same mean and standard deviation as Student's t, the distribution of this adjusted t statistic is accurately approximated by Student's t. Techniques are presented for accurately approximating the mean and standard deviation of the t statistic such that the adjusted t statistic can be readily calculated in practice. The analysis is extended in two directions. The first is to examine the effect of introducing an exogenous variable into the basic model. In the expanded model Student's t also accurately approximates the distribution of the t statistic for testing the autoregressive parameter and for testing the coefficient of the exogenous variable after these t statistics are adjusted for mean and standard deviation. The problem of obtaining a feasible adjustment procedure is that the moments of these t statistics now depend on nuisance parameters. The second is to examine the robustness of the results in the basic model to several nonnormal error distributions. For each nonnormal distribution the t statistic is adjusted using the mean and standard deviation appropriate for the case of normal errors and then the distribution of the modified t statistic is compared with that of Student's t.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.