The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

September 1987 - Volume 55 Issue 5 Page 1035 - 1056


p.1035


Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors

James H. Stock

Abstract

Time series variables that stochastically trend together form a cointegrated system. In such systems, certain linear combinations of contemporaneous values of these variables have a lower order of integration than does each variable considered individually. These linear combinations are given by cointegrating vectors. OLS and NLS estimators of the parameters of a cointegrating vector are shown to converge in probability to their true values at the rate T^1^-^@d for any positive @d. These estimators can be written asymptotically in terms of relatively simple nonnormal random matrices which do not depend on the parameters of the system. These asymptotic representations form the basis for simple and fast Monte Carlo calculations of the limiting distributions of these estimators. Asymptotic distributions thus computed are tabulated for several cointegrated processes.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.