The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 1987 - Volume 55 Issue 4 Page 911 - 922


p.911


Equilibrium in Hotelling's Model of Spatial Competition

Martin J. Osborne
Carolyn Pitchik

Abstract

We study Hotelling's two-stage model of spatial competition, in which two firms first simultaneously choose locations in the unit interval, then simultaneously choose prices. Under Hotelling's assumptions (uniform distribution of consumers, travel cost proportional to distance, inelastic demand of one unit by each consumer) the price-setting subgames possess equilibria in pure strategies for only a limited set of location pairs. Because of this problem (pointed out independently by Vickrey (1964) and d'Aspremont et al. (1979)), Hotelling's claim that there is an equilibrium of the two-stage game in which the firms locate close to each other is incorrect. A result of Dasgupta and Maskin (1986) guarantees that each price-setting subgame has an equilibrium in mixed strategies. We first study these mixed strategy equilibria. We are unable to provide a complete characterization of them, although we show that for a subset of location pairs all equilibria are of a certain type. We reduce the problem of finding an equilibrium of this type to that of solving three or fewer highly nonlinear equations. At each of a large number of location pairs we have computed approximate solutions to the system of equations. Next, we use our analytical results and computations to study the equilibrium location choices of the firms. There is a unique (up to symmetry) subgame perfect equilibrium in which the location choices of the firms are pure; in it, the firms locate 0.27 from the ends of the market. At this equilibrium, the support of the subgame equilibrium price strategy is the union of two short intervals. Most of the probability weight is in the upper interval, so that this strategy is reminiscent of occasional "sales" by the firms. We also find a subgame perfect equilibrium in which each firm uses a mixed strategy in locations. In fact, in the class of strategy pairs in which the firms use the same mixed strategy over locations, and this strategy is symmetric about .5, there is a single equilibrium. In this equilibrium most of the probability weight of the common strategy is between 0.2 and 0.4, and between 0.6 and 0.8. There is a wide range of pure Nash (as opposed to subgame perfect) equilibrium location pairs: the subgame strategies in which each firm threatens to charge a price of zero in response to a deviation support all but those location pairs in which the firms are very close.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.