The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

March 1987 - Volume 55 Issue 2 Page 363 - 390


p.363


Semi-Nonparametric Maximum Likelihood Estimation

A. Ronald Gallant
Douglas W. Nychka

Abstract

Often maximum likelihood is the method of choice for fitting an econometric model to data but cannot be used because the correct specification of the (multivariate) density that defines the likelihood is unknown. Regression with sample selection is an example. In this situation, simply put the density equal to a Hermite series and apply standard finite dimensional maximum likelihood methods. Model parameters and nearly all aspects of the unknown density itself will be estimated consistently provided that the length of the series increases with sample size. The rule for increasing series length can be data dependent. To assure in-range estimates, the Hermite series is in the form of a polynomial squared times a normal density function with the coefficients of the polynomial restricted so that the series integrates to one and has mean zero. If another density is more plausible a priori, it may be substituted for the normal. The paper verifies these claims and applies the method to nonlinear regression with sample selection and to estimation of the Stoker functional.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.