The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

March 1987 - Volume 55 Issue 2 Page 277 - 301


p.277


Time Series Regression with a Unit Root

P. C. B. Phillips

Abstract

This paper studies the random walk, in a general time series setting that allows for weakly dependent and heterogeneously distributed innovations. It is shown that simple least squares regression consistently estimates a unit root under very general conditions in spite of the presence of autocorrelated errors. The limiting distribution of the standardized estimator and the associated regression t statistic are found using functional central limit theory. New tests of the random walk hypothesis are developed which permit a wide class of dependent and heterogeneous innovation sequences. A new limiting distribution theory is constructed based on the concept of continuous data recording. This theory, together with an asymptotic expansion that is developed in the paper for the unit root case, explain many of the interesting experimental results recently reported in Evans and Savin (1981, 1984).

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.