The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

May 1986 - Volume 54 Issue 3 Page 507 - 532


p.507


Neighborhood Systems for Production Sets with Indivisibilities

Herbert E. Scarf

Abstract

A production set with indivisibilities is described by an activity analysis matrix with activity levels which can assume arbitrary integral values. A neighborhood system is an association with each integral vector of activity levels of a finite set of neighboring vectors. The neighborhood relation is assumed to be symmetric and translation invariant. Each such neighborhood system can be used to define a local maximum for the associated integer programs obtained by selecting a single commodity whose level is to be maximized subject to specified factor endowments of the remaining commodities. It is shown that each technology matrix (subject to mild regularity assumptions) has a unique, minimal neighborhood system for which a local maximum is global. The complexity of such minimal neighborhood systems is examined for several examples.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.