The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

January 1985 - Volume 53 Issue 1 Page 177 - 200


p.177


Third-Order Efficiency of the Extended Maximum Likelihood Estimators in a Simultaneous Equation System

Kei Takeuchi
Kimio Morimune

Abstract

We apply the third-order efficient method of estimation to the estimation problem of a system of structural equations in econometrics. The maximum likelihood estimator (hereafter m.l.e.) of structural equations is proved to give uniformly higher probability of concentration about true values than any regular best asymptotically normal estimator, if its asymptotic bias is properly adjusted. For instance, the full-information or limited-information m.l.e give asymptotically uniformly higher probability of concentration than the three-stage or two-stage least-squares estimators, given that these estimators are adjusted to have the same biases. The same result holds for he subsystem m.l.e. We prove the asymptotic completeness of Fuller's modified estimator. Asymptotic expansions of the distributions of the full-information m.l., subsystem m.l., and limited-information m.l. estimators are derived to terms of order O(T^-1). Our general theorem is also applied to the multi-equation seemingly unrelated regression (SUR) model.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.