The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 1984 - Volume 52 Issue 4 Page 827 - 842


p.827


Hypothesis Testing in Linear Models when the Error Covariance Matrix is Nonscalar

Thomas J. Rothenberg

Abstract

Stochastic expansions are developed for the Lagrange multiplier, likelihood ratio, and Wald statistics for testing regression coefficients in the normal linear model with unknown error covariance matrix. Under suitable regularity conditions, the likelihood ratio statistic is found to be approximately the average of the other two. Critical values are calculated so that the three tests have approximately the same size. The second-order approximate local power functions indicate that, when the null hypothesis is one dimensional, all three tests are equally powerful. When the hypothesis is multidimensional, the power functions differ; no one of the tests is uniformly more powerful than the others.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.