The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

July 1979 - Volume 47 Issue 4 Page 901 - 920


p.901


Decomposable Income Inequality Measures

Francois Bourguignon

Abstract

A decomposable inequality measure is defined as a measure such that the total inequality of a population can be broken down into a weighted average of the inequality existing within subgroups of the population and the inequality existing between them. Thus, decomposable measures differ only by the weights given to the inequality within the subgroups of the population. It is proven that the only zero-homogeneous "income-weighted" decomposable measure is Theil's coefficient (T) and that the only zero-homogeneous "population-weighted" decomposable measure is the logarithm of the arithmetic mean over the geometric mean (L). More generally, it is proved that T and L are the only decomposable inequality measures such that the weight of the "within-components" in the total inequality of a partitioned population sum to a constant. More general decomposable measures are also analyzed.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.