The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

September 1971 - Volume 39 Issue 5 Page 695 - 712


p.695


CRESH Production Functions

Giora Hanoch

Abstract

The paper defines and analyzes a functional form for a one-output, many-factors production function, which is homothetic (or homogeneous), and exhibits CRES; that is, its ES (Allen-Uzawa elasticities of substitution) vary along isoquants and differ as between pairs of factors, but the ES stand in fixed ratios everywhere. Given data on factor prices, quantities, and assuming competitive cost-minimization, the parameters of CRESH are estimable from a system of log-linear equations, each containing at most three independent variables. The CES function, as wall as its limiting forms (the Cobb-Douglas ($\sigma = 1), Leontief ($\sigma = 0$), and linear ($\sigma = \infty$) functions) are special cases of CRESH. The Mukerji CRES function has an identical unit-isoquant surface, but it is not homothetic. Appendix A analyzes the Mukerji function. Appendix B derives the (implicit) CRESH cost function.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.