The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

March 1971 - Volume 39 Issue 2 Page 219 - 239


p.219


The Production Coefficient Matrix and the Stolper-Samuelson Condition

Ken-ichi Inada

Abstract

The purpose of this paper is to generalize to the n-commodity, n-factor case the Stolper-Samuelson condition which has established a relationship between commodity prices and factor reward rates for the two-commodity, two-factor case, and to study some necessary and/or sufficient conditions for the generalized Stolper-Samuelson conditions. Two types of generalization are studied. One is the case where the inverse of the production coefficient matrix is a Minkowski matrix. Another is the case where it is a Metzler matrix. Some results about the former have already been obtained by some economists [1, 4, 8]. But the latter case has been left unexplored so far. The main purpose of this paper is to emphasize the necessity of studying the latter case and to obtain some results corresponding to those obtained for the former case. Another purpose of this paper is to establish a univalence theorem. When all principal minors of the Jacobian matrix are positive, univalence holds. This is the theorem by Gale and Nikaido [3]. In this paper, we prove that when all principal minors of the Jacobian matrix are negative, univalence holds. This theorem cannot be obtained trivially from Gale-Nikaido's theorem, but the technique employed by them for their proof can be used for our theorem.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.