The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

January 1966 - Volume 34 Issue 1 Page 77 - 104


p.77


The Stability of Truncated Solutions of Stochastic Linear Programming

J. K. Sengupta

Abstract

In an ordinary linear programming problem it is assumed that all the parameters (i.e., the coefficients of the objective function), the inequalities, and the resource availabilities are exactly known without errors. This assumption is relaxed in stochastic linear programming where some or all of the parameters are known only by their probability distributions. A distinction is generally drawn between the two approaches to stochastic linear programming: the passive (also termed "wait and see" approach) and the active (also termed "here and now" approach). In the passive approach the probability distribution of the objective function is derived explicitly or by numerical approximations, and decision rules are based on some features of this distribution. In the active approach additional decision variables are introduced indicating the amounts of various resources to be allocated to different activities. This paper analyzes a method of characterizing the distribution of the objective function values corresponding to the set of extreme points in the solution space for both these approaches of stochastic linear programming. Truncation refers to the selection of extreme points that are neighbors, so to say, to the optimal extreme point. The sensitivity of objective function values corresponding to truncated solutions is analyzed here in terms of stability properties, stability being measured in terms of variance. An application to an empirical economic problem where there are parametric variations in the coefficient matrix only is presented to illustrate the numerical problems and approximations involved in estimating the statistical distribution of the objective function. From an economic point of view the approach outlined here offers a theory of the second best, since it specifies the set of conditions under which a value of the objective function that corresponds to the optimum solution on the average may have higher instability than another value of the objective function that corresponds to a truncated solution, under the assumed conditions of stochastic linear programming.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.