The Econometric Society An International Society for the Advancement of Economic Theory in its Relation to Statistics and Mathematics
Home Contacts
Econometrica

New Journals

Econometrica
Editorial Board
Journal News

Monograph Series

October 1965 - Volume 33 Issue 4 Page 781 - 796


p.781


Using Full Duality to Show that Simultaneously Additive Direct and Indirect Utilities Implies Unitary Price Elasticity of Demand

Paul A. Samuelson

Abstract

The "indirect utility function," a concept associated with Hotelling, Roy, Houthakker, and others, gives the maximized value of consumer's ordinal utility in function of the prices and income of his budget constraint: namely, $\phi^{\ast} (p_{1} \I, \ldots, P_{n}\I) = \max \phi (x_{1}, \ldots, x_{n})$ with respect to $x$'s satisfying the budget constraint $\Sigma_{1}^{n} (p_{j} / I) x_{j} = 1$. Writing $p_{j} / I = y_{j}, \Phi (Y) = -\phi^{\ast} (Y)$ it follows that $N (X;Y) = \phi (X) + \Phi (Y) \lesseqqgtr 0$ along $\Sigma^{n}_{1} x_{j} y_{j} = 1$, equalling zero only along the equilibrium demand relations $X = X(Y), Y = Y(X) \equiv X^{-1}(X).$ It is shown that $\phi (X)$ and $\Phi (X)$ are completely dual functions, one possessing all the general properties of the other. Just as $/phi$'s partial derivatives give $\phi_{i} \phi_{j} = y_{i}/y_{j}$, $\varPhi$'s give $\varPhi_{i}/\varPhi_{j} = x_{i}/x_{j}$, etc. Numerous theorems are proved, such as: if either of $\phi$ and $\varPhi$ has homothetic contours, so does the other; if both can be stretched into an additive form, they are both homothetic and belong to the so-called constant-elasticity-of-substitution family of Solow et al., a result already anticipated by Bergson in 1936; if the above can hold with no stretching required, we are in the "pure Bernoulli-Marshall" or Cobb-Douglas case of unitary own-elasticity and other demonstrated equivalent properties. Finally, dual functions of mixed variables, $\phi (y_{1}, \ldots, y_{r}; x_{r+1}, \ldots, x_{n})$ and $\varPhi (x_{1}, \ldots, y_{r+1}, \ldots, y_{n}$, are defined by Legendre transformations and the properties of "demand under rationing" are deduced from them.

Full content Login                                    

Note: to view the fulltext of the article, please login first and then click the "full content" button. If you are based at a subscribing Institution or Library or if you have a separate access to JSTOR/Wiley Online Library please click on the "Institutional access" button.
Prev | All Articles | Next
Go to top
Membership



Email me my password
Join/Renew
Change your address
Register for password
Require login:
Amend your profile
E-mail Alerting
The Society
About the Society
Society News
Society Reports
Officers
Fellows
Members
Regions
Meetings
Future Meetings
Past Meetings
Meeting Announcements
Google
web this site
   
Wiley-Blackwell
Site created and maintained by Wiley-Blackwell.
Comments? Contact customsiteshelp@wiley.com
To view our Privacy Policy, please click here.