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This paper studies inference in randomized controlled trials with covariate-
adaptive randomization when there are multiple treatments. More specifically,
we study in this setting inference about the average effect of one or more treat-
ments relative to other treatments or a control. As in Bugni, Canay, and Shaikh
(2018), covariate-adaptive randomization refers to randomization schemes that
first stratify according to baseline covariates and then assign treatment status so
as to achieve “balance” within each stratum. Importantly, in contrast to Bugni,
Canay, and Shaikh (2018), we not only allow for multiple treatments, but fur-
ther allow for the proportion of units being assigned to each of the treatments
to vary across strata. We first study the properties of estimators derived from a
“fully saturated” linear regression, that is, a linear regression of the outcome on
all interactions between indicators for each of the treatments and indicators for
each of the strata. We show that tests based on these estimators using the usual
heteroskedasticity-consistent estimator of the asymptotic variance are invalid in
the sense that they may have limiting rejection probability under the null hypoth-
esis strictly greater than the nominal level; on the other hand, tests based on these
estimators and suitable estimators of the asymptotic variance that we provide
are exact in the sense that they have limiting rejection probability under the null
hypothesis equal to the nominal level. For the special case in which the target
proportion of units being assigned to each of the treatments does not vary across
strata, we additionally consider tests based on estimators derived from a linear
regression with “strata fixed effects,” that is, a linear regression of the outcome on
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indicators for each of the treatments and indicators for each of the strata. We show
that tests based on these estimators using the usual heteroskedasticity-consistent
estimator of the asymptotic variance are conservative in the sense that they have
limiting rejection probability under the null hypothesis no greater than and typi-
cally strictly less than the nominal level, but tests based on these estimators and
suitable estimators of the asymptotic variance that we provide are exact, thereby
generalizing results in Bugni, Canay, and Shaikh (2018) for the case of a single
treatment to multiple treatments. A simulation study and an empirical applica-
tion illustrate the practical relevance of our theoretical results.
Keywords. Covariate-adaptive randomization, multiple treatments, stratified
block randomization, Efron’s biased-coin design, treatment assignment, random-
ized controlled trial, strata fixed effects, saturated regression.

JEL classification. C12, C14.

1. Introduction

This paper studies inference in randomized controlled trials with covariate-adaptive
randomization when there are multiple treatments. As in Bugni, Canay, and Shaikh
(2018), covariate-adaptive randomization refers to randomization schemes that first
stratify according to baseline covariates and then assign treatment status so as to
achieve “balance” within each stratum. Many such methods are used routinely when as-
signing treatment status in randomized controlled trials in all parts of the sciences. See,
for example, Rosenberger and Lachin (2016) for a textbook treatment focused on clini-
cal trials and Duflo, Glennerster, and Kremer (2007) and Bruhn and McKenzie (2009) for
reviews focused on development economics. Importantly, in contrast to Bugni, Canay,
and Shaikh (2018), we not only allow for multiple treatments, but further allow the tar-
get proportion of units being assigned to each of the treatments to vary across strata.
In this paper, we take as given the use of such a treatment assignment mechanism and
study its consequences for inference about the average effect of one or more treatments
relative to other treatments or a control. Our main requirement is that the randomiza-
tion scheme is such that the fraction of units being assigned to each treatment within
each stratum is suitably well behaved in a sense made precise by our assumptions be-
low as the sample size n tends to infinity. See, in particular, Assumptions 2.2(b) and
4.1(c). Importantly, these requirements are satisfied by most commonly used treatment
assignment mechanisms, including simple random sampling and stratified block ran-
domization. The latter treatment assignment scheme is especially noteworthy because
of its widespread use recently in development economics. See, for example, Dizon-
Ross (2018, footnote 13), Duflo, Dupas, and Kremer (2015, footnote 6), Callen, Gulzar,
Hasanain, Khan, and Rezaee (2019, p. 24), and Berry, Karlan, and Pradhan (2018, p. 6).

We first study the properties of ordinary least squares estimation of a “fully satu-
rated” linear regression, that is, a linear regression of the outcome on all interactions
between indicators for each of the treatments and indicators for each of the strata.
We emphasize that tests based on these estimators were not considered previously in
Bugni, Canay, and Shaikh (2018). We show that tests based on these estimators using
the usual heteroskedasticity-consistent estimator of the asymptotic variance are invalid
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in the sense that they may have limiting rejection probability under the null hypothesis
strictly greater than the nominal level. As explained further below, this phenomenon
contrasts sharply with the analysis in Bugni, Canay, and Shaikh (2018) of other tests
that were found to be conservative in the sense that their limiting rejection probabil-
ities were no greater than the nominal level. We then exploit our characterization of
the behavior of the ordinary least squares estimator of the coefficients in such a regres-
sion under covariate-adaptive randomization to develop a consistent estimator of the
asymptotic variance. Our main result about the “fully saturated” linear regression shows
that tests based on these estimators and our new estimator of the asymptotic variance
are exact in the sense that they have limiting rejection probability under the null hy-
pothesis equal to the nominal level. In a simulation study, we find that tests using the
usual heteroskedasticity-consistent estimator of the asymptotic variance may have re-
jection probability under the null hypothesis dramatically larger than the nominal level.
On the other hand, tests using the new estimator of the asymptotic variance have rejec-
tion probability under the null hypothesis very close to the nominal level.

We additionally consider tests based on ordinary least squares estimation of a linear
regression with “strata fixed effects,” that is, a linear regression of the outcome on indi-
cators for each of the treatments and indicators for each of the strata. As emphasized by
Imbens and Rubin (2015, Chapter 9) in the case of a single treatment, such estimators
need not even be consistent for the average treatment effect when the target propor-
tion of units being assigned to treatment varies across strata, so in our analysis of tests
based on these estimators we restrict attention to the special case in which the target
proportion of units being assigned to each of the treatments does not vary across strata.
Based on simulation evidence and earlier assertions by Kernan, Viscoli, Makuch, Brass,
and Horwitz (1999), the use of this test has been recommended by Bruhn and McKen-
zie (2009). More recently, Bugni, Canay, and Shaikh (2018) provided a formal analysis
of the properties of tests based on these estimators in the case of a single treatment.
In this paper, we extend the analysis in Bugni, Canay, and Shaikh (2018) about these
tests to multiple treatments. We show that tests based on these estimators using the
usual heteroskedasticity-consistent estimator of the asymptotic variance are conserva-
tive in the sense that they have limiting rejection probability under the null hypothesis
no greater than, and typically strictly less than, the nominal level. Once again, we ex-
ploit our characterization of the behavior of the ordinary least squares estimator of the
coefficients in such a regression under covariate-adaptive randomization to develop a
consistent estimator of the asymptotic variance. Our main result about the linear regres-
sion with “strata fixed effects” shows that tests based on these estimators and our new
estimator of the asymptotic variance are exact in the sense that they have limiting re-
jection probability under the null hypothesis equal to the nominal level. In a simulation
study, we find that tests using the usual heteroskedasticity-consistent estimator of the
asymptotic variance may have rejection probability under the null hypothesis dramati-
cally less than the nominal level and, as a result, may have very poor power when com-
pared to other tests. On the other hand, tests using the new estimator of the asymptotic
variance have rejection probability under the null hypothesis very close to the nominal
level.
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The remainder of the paper is organized as follows. In Section 2, we describe our
setup and notation. In particular, there we describe the assumptions we impose on the
treatment assignment mechanism. Our main results concerning the “fully saturated”
linear regression are contained in Section 3. Our main results concerning the linear re-
gression with “strata fixed effects” are contained in Section 4. In Section 5, we discuss our
results in the special case where there is only a single treatment, which facilitates a com-
parison of our results with those in Imbens and Rubin (2015, Chapter 9). In Section 6, we
examine the finite-sample behavior of all the tests we consider in this paper via a small
simulation study. In Section 7, we provide recommendations for empirical practice. Fi-
nally, in Section 8, we provide an empirical illustration of our results. Proofs of all results
are provided in the Appendix. Replication files are posted as a supplementary material
(Bugni, Canay, and Shaikh (2019)).

2. Setup and notation

Let Yi denote the (observed) outcome of interest for the ith unit, Ai denote the treat-
ment received by the ith unit, and Zi denote observed, baseline covariates for the ith
unit. The list of possible treatments is given by A = {1� � � � � |A|}, and we say there are
multiple treatments when |A| > 1. Without loss of generality, we assume there is a con-
trol group, which we denote as treatment zero, and use A0 = {0} ∪ A to denote the list
of treatments that includes the control group. Denote by Yi(a) the potential outcome
of the ith unit under treatment a ∈ A0. As usual, the (observed) outcome and potential
outcomes are related to treatment assignment by the relationship

Yi =
∑
a∈A0

Yi(a)I{Ai = a} = Yi(Ai)� (1)

Denote by Pn the distribution of the observed data

X(n) = {(Yi�Ai�Zi) : 1 ≤ i ≤ n
}

and denote by Qn the distribution of

W (n) = {(Yi(0)�Yi(1)� � � � �Yi

(|A|)�Zi

) : 1 ≤ i ≤ n
}
�

Note that Pn is jointly determined by (1), Qn, and the mechanism for determining treat-
ment assignment. We therefore state our assumptions below in terms of assumptions
on Qn and assumptions on the mechanism for determining treatment status. Indeed,
we will not make reference to Pn in the sequel and all operations are understood to be
under Qn and the mechanism for determining treatment status.

Strata are constructed from the observed, baseline covariates Zi using a function
S : supp(Zi) → S , where S is a finite set. For 1 ≤ i ≤ n, let Si = S(Zi) and denote by S(n)

the vector of strata (S1� � � � � Sn).
We begin by describing our assumptions on Qn. We assume that W (n) consists

of n i.i.d. observations, that is, Qn = Qn, where Q is the marginal distribution of
(Yi(0)�Yi(1)� � � � �Yi(|A|)�Zi). In order to rule out trivial strata, we henceforth assume
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that p(s) = P{Si = s} > 0 for all s ∈ S . We further restrict Q to satisfy the following mild
requirement.

Assumption 2.1. Q satisfies

max
a∈A0

E
[∣∣Yi(a)

∣∣2]<∞

and for all a ∈ A0

max
s∈S

Var
[
Yi(a)|Si = s

]
> 0�

We note that the second requirement in Assumption 2.1 is made only to rule out
degenerate situations and is stronger than required for our results.

Next, we describe our assumptions on the mechanism determining treatment as-
signment. As mentioned previously, in this paper we focus on covariate-adaptive ran-
domization, that is, randomization schemes that first stratify according baseline covari-
ates and then assign treatment status so as to achieve “balance” within each stratum.
In order to describe our assumptions on the treatment assignment mechanism more
formally, we require some further notation. Let A(n) be vector of treatment assignments
(A1� � � � �An). For any (a� s) ∈ A0 × S , let πa(s) ∈ (0�1) be the target proportion of units
to assign to treatment a in stratum s, let

na(s) =
∑

1≤i≤n

I{Ai = a�Si = s}

be the number of units assigned to treatment a in stratum s, and let

n(s) =
∑

1≤i≤n

I{Si = s}

be the total number of units in stratum s. Note that
∑

a∈A0
πa(s) = 1 for all s ∈ S . The

following assumption summarizes our main requirement on the treatment assignment
mechanism for the analysis of the “fully saturated” linear regression.

Assumption 2.2. The treatment assignment mechanism is such that

(a) W (n) ⊥⊥ A(n)|S(n).
(b) na(s)

n(s)

P→ πa(s) as n → ∞ for all (a� s) ∈ A× S .

Assumption 2.2(a) simply requires that the treatment assignment mechanism is a
function only of the vector of strata and an exogenous randomization device. Assump-
tion 2.2(b) is an additional requirement that imposes that the (possibly random) fraction
of units assigned to treatment a and stratum s approaches the target proportion πa(s)

as the sample size tends to infinity. This requirement is satisfied by a wide variety of
randomization schemes; see Bugni, Canay, and Shaikh (2018), Rosenberger and Lachin
(2016, Sections 3.10 and 3.11), and Wei, Smythe, and Smith (1986, Proposition 2.5). Be-
fore proceeding, we briefly discuss two popular randomization schemes that are easily
seen to satisfy Assumption 2.2.
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Example 2.1 (Simple random sampling). Simple random sampling (SRS), also known
as Bernoulli trials, refers to the case where A(n) consists of n i.i.d. random variables with

P
{
Ak = a|S(n)�A(k−1)}= P{Ak = a} = πa (2)

for 1 ≤ k ≤ n and πa ∈ (0�1) satisfying
∑

a∈A0
πa = 1. In this case, Assumption 2.2(a)

follows immediately from (2), while Assumption 2.2(b) follows from the weak law of large
numbers. If (2) is such that the target probabilities πa vary by strata, then

P
{
Ak = a|S(n)�A(k−1)}= P{Ak = a|Sk = s} = πa(s)�

which is equivalent to simple random sampling within each stratum.

Example 2.2 (Stratified block randomization). An early discussion of stratified block
randomization (SBR) is provided by Zelen (1974) for the case of a single treatment. This
randomization scheme is sometimes also referred to as block randomization or per-
muted blocks within strata. In order to describe this treatment assignment mechanism,
for s ∈ S , denote by n(s) the number of units in stratum s and let

na(s) = ⌊n(s)πa(s)
⌋

for a ∈ A with n0(s) = n(s) −∑a∈A na(s). In this randomization scheme, independently
for each each stratum s, na(s) units are assigned to each treatment a, where all(

n(s)

n0(s)�n1(s)� � � � � n|A|(s)

)

possible assignments are equally likely. Assumptions 2.2(a) and 2.2(b) follow by con-
struction in this case.

We note that our analysis of the linear regression with “strata fixed effects” requires
an assumption that is mildly stronger than Assumption 2.2 above. It is worth emphasiz-
ing that this stronger assumption parallels the assumption made in Bugni, Canay, and
Shaikh (2018) for the analysis of linear regression with “strata fixed effects” in the case of
a single treatment and is also satisfied by a wide variety of treatment assignment mech-
anisms, including Examples 2.1 and 2.2 above. See Assumption 4.1 and the subsequent
discussion there for further details.

Our object of interest is the vector of average treatment effects (ATEs) on the out-
come of interest. For each a ∈ A, we use

θa(Q)≡ E
[
Yi(a)−Yi(0)

]
(3)

to denote the ATE of treatment a relative to the control and

θ(Q)≡ (θa(Q) : a ∈ A
)= (θ1(Q)� � � � � θ|A|(Q)

)′
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to denote the |A|-dimensional vector of such ATEs. Our results permit testing a variety
of hypotheses on smooth functions of the vector θ(Q) at level α ∈ (0�1). In particular,
hypotheses on linear functionals can be written as

H0 :Ψθ(Q)= c versus H1 : Ψθ(Q) 
= c� (4)

where Ψ is a full-rank (r × |A|)-dimensional matrix and c is a r-dimensional column
vector. This framework accommodates, for example, hypotheses on a particular ATE,

H0 : θa(Q) = c versus H1 : θa(Q) 
= c� (5)

as well as hypotheses comparing treatment effects,

H0 : θa(Q) = θa′(Q) versus H1 : θa(Q) 
= θa′(Q) for any a�a′ ∈ A� (6)

Note that θa(Q) = θa′(Q) if and only if E[Yi(a)] = E[Yi(a
′)]. We note further that it is

also possible to use our results to test smooth nonlinear hypotheses on θ(Q) via the
Delta method, but, for ease of exposition, we restrict our attention to linear restrictions
as described above in what follows.

Finally, we often transform objects that are indexed by (a� s) ∈ A × S into vec-
tors or matrices, using the following conventions. For X(a) being a scalar object in-
dexed over a ∈ A, we use (X(a) : a ∈ A) to denote the |A|-dimensional column vector
(X(1)� � � � �X(|A|))′. For Xa(s) being a scalar object indexed by (a� s) ∈ A × S we use
(Xa(s) : (a� s) ∈ A × S) to denote the (|A| × |S|)-dimensional column vector where the
order of the indices matter: first, we iterate over a and then over s, that is,

(
Xa(s) : (a� s) ∈ A× S

)≡ (X1(1)� � � � �X|A|(1)�X1(2)� � � � �X|A|(2)� � � �
)′
�

Remark 2.1. The term “balance” is often used in a different way to describe whether the
distributions of baseline covariates Zi in the treatment and control groups are similar.
For example, this might be measured according to the difference in the means of Zi in
the treatment and control groups. Our usage follows the usage in Efron (1971) or Hu and
Hu (2012), where “balance” refers to the extent to which the of fraction of treated units
within a strata differs from the target proportion πa(s).

3. “Fully saturated” linear regression

In this section, we study the properties of ordinary least squares estimation of a linear re-
gression of the outcome on all interactions between indicators for each of the treatments
and indicators for each of the strata under covariate-adaptive randomization. We then
study the properties of different tests of (4) based on these estimators. As already noted,
these tests have not been previously considered in Bugni, Canay, and Shaikh (2018).
We consider tests using both the usual homoskedasticity-only and heteroskedasticity-
robust estimators of the asymptotic variance. Our results show that neither of these esti-
mators are consistent for the asymptotic variance, and, as a result, both lead to tests that
are asymptotically invalid in the sense that they may have limiting rejection probability
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under the null hypothesis strictly greater than the nominal level. In light of these results,
we exploit our characterization of the behavior of the ordinary least squares estimator
of the coefficients in such a regression under covariate-adaptive randomization to de-
velop a consistent estimator of the asymptotic variance. Furthermore, tests using our
new estimator of the asymptotic variance are exact in the sense that they have limiting
rejection probability under the null hypotheses equal to the nominal level.

In order to define the tests we study, consider estimation of the equation

Yi =
∑
s∈S

δ(s)I{Si = s} +
∑

(a�s)∈A×S
βa(s)I{Ai = a�Si = s} + ui (7)

by ordinary least squares. For all s ∈ S , denote by δ̂n(s) and β̂n�a(s) the resulting estima-
tors of δ(s) and βa(s), respectively. The corresponding estimator of the ATE of treatment
a is given by

θ̂n�a =
∑
s∈S

n(s)

n
β̂n�a(s)� (8)

and the resulting estimator of θ(Q) is thus given by

θ̂n = (θ̂n�a : a ∈ A) ≡ (θ̂n�1� � � � � θ̂n�|A|)′� (9)

Let V̂n be an estimator of the asymptotic covariance matrix of θ̂n. For testing the hy-
potheses in (4), we consider tests of the form

φsat
n

(
X(n)

)= I
{
T sat
n

(
X(n)

)
>χ2

r�1−α

}
� (10)

where

T sat
n

(
X(n)

)= n(Ψθ̂n − c)′
(
Ψ V̂nΨ

′)−1
(Ψ θ̂n − c)

and χ2
r�1−α is the 1 − α quantile of a χ2 random variable with r degrees of freedom. In

order to study the properties of this test, we first derive in the following theorem the
asymptotic behavior of θ̂n.

Theorem 3.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mech-
anism satisfies Assumption 2.2. Then

√
n
(
θ̂n − θ(Q)

) d→N(0�Vsat)�

where Vsat = VH +VỸ ,

VH ≡
∑
s∈S

p(s)
(
E
[
ma(Zi)−m0(Zi)|Si = s

] : a ∈ A
)

× (E[ma(Zi)−m0(Zi)|Si = s
] : a ∈ A

)′
� (11)

VỸ ≡
∑
s∈S

p(s)σ2
Ỹ (0)

(s)

π0(s)
ι|A|ι′|A| + diag

(∑
s∈S

p(s)σ2
Ỹ (a)

(s)

πa(s)
: a ∈ A

)
� (12)
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ι|A| is a |A|-dimensional vector of ones, and

ma(Zi) ≡E
[
Yi(a)|Zi

]−E
[
Yi(a)

]
�

σ2
Ỹ (a)

(s) ≡ Var
[
Ỹi(a)|Si = s

]
�

Ỹi(a) ≡ Yi(a)−E
[
Yi(a)|Si = s

]
�

Remark 3.1. For each a ∈ A, note that

√
n
(
θ̂n�a − θa(Q)

) =
∑
s∈S

(√
n

(
n(s)

n
−p(s)

)
β̂n�a(s)+ √

n
(
β̂n�a(s)−βa(s)

)
p(s)

)

=
∑
s∈S

(√
n

(
n(s)

n
−p(s)

)
βa(s)+ √

n
(
β̂n�a(s)−βa(s)

)
p(s)

)
+ oP(1)�

where the second equality exploits a novel law of large numbers that accounts for
covariate-adaptive randomization (see Lemma C.4) and the central limit theorem. It is
therefore straightforward to derive the conclusion of Theorem 3.1 from the limit in dis-
tribution of (√

n

(
n(s)

n
−p(s)

)
�
√
n
(
β̂n�a(s)−βa(s)

) : (a� s) ∈ A× S
)
� (13)

The derivation of the limit in distribution of (13) does not follow from conventional cen-
tral limit theorems due to covariate-adaptive randomization. These difficulties are over-
come in Lemma C.1 in the Appendix using a novel coupling-like argument in combina-
tion with results about partial sums.

The following theorem characterizes the limits in probability for the usual homo-
skedasticity-only and heteroskedasticity-robust estimators of the asymptotic variance. It
shows, in particular, that neither V̂ho nor V̂hc are consistent for the asymptotic variance
of θ̂n, Vsat.

Theorem 3.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mech-
anism satisfies Assumption 2.2. Let V̂ho be the homoskedasticity-only estimator of the
asymptotic variance defined in (35) and V̂hc be the heteroskedasticity-consistent estima-
tor of the asymptotic variance defined in (36). Then,

V̂ho
P→

∑
(a�s)∈A0×S

p(s)πa(s)σ
2
Ỹ (a)

(s)

[∑
s∈S

p(s)

π0(s)
ι|A|ι′|A| + diag

(∑
s∈S

p(s)

πa(s)
: a ∈ A

)]

and

V̂hc
P→
∑
s∈S

p(s)σ2
Ỹ (0)

(s)

π0(s)
ι|A|ι′|A| + diag

(∑
s∈S

p(s)σ2
Ỹ (a)

(s)

πa(s)
: a ∈ A

)
�
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Remark 3.2. In the special case with a single treatment, that is, |A| = 1, we show in
Section 5 that the limit in probability of V̂hc could be strictly smaller than Vsat. Therefore,
testing (4) using (10) with V̂n = V̂hc could lead to overrejection. In our simulation study
in Section 6, we find that the rejection probability may in fact be substantially larger than
the nominal level.

Remark 3.3. It is important to note that in the special case where |A| = 1 and π1(s) = 1
2

for all s ∈ S , both V̂ho and V̂hc are consistent for Vsat. The particular properties of this
special case have been already highlighted by Bugni, Canay, and Shaikh (2018) in the
cases of the two-sample t-test, t-test with strata fixed effects, and covariate-adaptive
permutation tests.

Even though V̂hc is generally inconsistent for Vsat, the proof of Theorem 3.2 reveals
that

V̂hc
P→VỸ � (14)

under the same assumptions. We exploit this observation in the following theorem to
construct a consistent estimator of the asymptotic variance. The theorem further es-
tablishes that tests using this new estimator of the asymptotic variance are exact in the
sense that they have limiting rejection probability under the null hypotheses equal to
the nominal level.

Theorem 3.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mech-
anism satisfies Assumption 2.2. Let V̂hc be the heteroskedasticity-consistent estimator of
the asymptotic variance defined in (36) and let

V̂H =
∑
s∈S

n(s)

n

(
β̂n�a(s)− θ̂n�a : a ∈ A

)(
β̂n�a(s)− θ̂n�a : a ∈ A

)′
� (15)

where θ̂n�a is as in (8) and β̂n�a(s) is the ordinary least squares estimator of βa(s) in (7).
Then

V̂sat = V̂H + V̂hc
P→Vsat = VH +VỸ � (16)

In addition, for the problem of testing (4) at level α ∈ (0�1), φsat
n (X(n)) defined in (10) with

V̂n = V̂sat satisfies

lim
n→∞E

[
φsat
n

(
X(n)

)]= α (17)

for Q additionally satisfying the null hypothesis, that is, Ψθ(Q)= c.

4. Linear regression with “strata fixed effects”

In this section, we study the properties of ordinary least squares estimation of a linear
regression of the outcome on indicators for each of the treatments and indicators for
each of the strata under covariate-adaptive randomization. We then study the proper-
ties of different tests of (4) based on these estimators. As before, we consider tests using
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both the usual homoskedasticity-only and heteroskedasticity-robust estimators of the
asymptotic variance, and our results show that neither of these estimators are consistent
for the asymptotic variance. We therefore exploit, as in the previous section, our char-
acterization of the behavior of the ordinary least squares estimator of the coefficients in
such a regression under covariate-adaptive randomization to develop a consistent es-
timator of the asymptotic variance, which leads to tests that are exact in the sense that
they have limiting rejection probability under the null hypotheses equal to the nominal
level.

In order to define the tests we study, consider estimation of the equation

Yi =
∑
s∈S

δ∗
s I{Si = s} +

∑
a∈A

β∗
aI{Ai = a} + ui (18)

by ordinary least squares. Denote by β̂∗
n�a the resulting estimator of β∗

a in (18). The cor-

responding estimator of the ATE of treatment a is simply given by β̂∗
n�a, and the resulting

estimator of θ(Q) is thus given by

θ̂∗
n = (β̂∗

n�a : a ∈ A
)≡ (β̂∗

n�1� � � � � β̂
∗
n�|A|

)′
� (19)

Let V̂∗
n be an estimator of the asymptotic variance of θ̂∗

n. For testing the hypotheses in
(4), we consider tests of the form

φsfe
n

(
X(n)

)= I
{
T sfe
n

(
X(n)

)
>χ2

r�1−α

}
� (20)

where

T sfe
n

(
X(n)

)= n
(
Ψθ̂∗

n − c
)′(

Ψ V̂
∗
nΨ

′)−1(
Ψθ̂∗

n − c
)

and χ2
r�1−α is the 1 − α quantile of a χ2 random variable with r degrees of freedom. In

order to study the properties of this test, we first derive the asymptotic behavior of θ̂∗
n.

As mentioned earlier, in order to do so, we impose instead of Assumption 2.2 the fol-
lowing assumption, which mildly strengthens it. We emphasize again that this stronger
assumption parallels the assumption made in Bugni, Canay, and Shaikh (2018) for the
analysis of linear regression with “strata fixed effects” in the case of a single treatment
and is also satisfied by a wide variety of treatment assignment mechanisms, including
Examples 2.1 and 2.2.

Assumption 4.1. The treatment assignment mechanism is such that

(a) W (n) ⊥⊥ A(n)|S(n).
(b) πa(s) = πa ∈ (0�1) for all (a� s) ∈ A× S .

(c) {(√n(na(s)n(s) − πa) : (a� s) ∈ A × S)|S(n)} d→ N(0�diag(ΣD(s)/p(s) : s ∈ S)) a.s. where
for each s ∈ S and some τ(s) ∈ [0�1],

ΣD(s) = τ(s)
[
diag(πa : a ∈ A)− (πa : a ∈ A)(πa : a ∈ A)′

]
� (21)
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Assumption 4.1(a) is the same as Assumption 2.2(a) and requires that the treatment
assignment mechanism is a function only of the vector of strata and an exogenous ran-
domization device. Assumption 4.1(b) requires the target proportion πa(s) to be con-
stant across strata. This restriction is required for consistency of θ̂∗

n for θ(Q). Finally,
Assumption 4.1(c) is stronger than Assumption 2.2(b) and requires that the (possibly
random) fraction of units assigned to treatment a and stratum s is asymptotically nor-
mal as the sample size tends to infinity. In the case of simple random sampling, where
each unit is randomly assigned to each treatment with probability πa, Assumption 4.1(c)
holds with τ(s)= 1 for all s ∈ S . In this sense, the assumption requires that the treatment
assignment mechanism improves “balance” relative to simple random sampling. At the
other extreme, we say that the treatment assignment mechanism achieves “strong bal-
ance” when τ(s) = 0 for all s ∈ S , which leads to ΣD(s) being a null matrix. It is straight-
forward to show that stratified block randomization satisfies Assumption 4.1(c) with
τ(s) = 0, that is, that it achieves “strong balance.”

The following theorem derives the asymptotic behavior of θ̂∗
n.

Theorem 4.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mech-
anism satisfies Assumption 4.1. Then

√
n
(
θ̂∗
n − θ(Q)

) d→ N(0�Vsfe)�

where Vsfe = VH + VỸ + VA, VH is as in (11), VỸ is as in (12) with πa(s) = πa for all
(a� s) ∈ A× S , and

VA ≡
(∑
s∈S

p(s)

(
ξa(s)ξa′(s)

ΣD(s)[a�a′]
πaπa′

− ξa(s)ξ0(s)
ΣD(s)[a�0]
πaπ0

− ξa′(s)ξ0(s)
ΣD(s)[a′�0]
πa′π0

+ ξ0(s)ξ0(s)
ΣD(s)[0�0]
π0π0

)
: (a�a′) ∈ A×A

)
(22)

and

ξa(s) ≡ E
[
ma(Zi)|Si = s

]− ∑
a′∈A0

πa′E
[
ma′(Zi)|Si = s

]
� (23)

Lemmas C.6 and C.7 in the Appendix derive the limit in probability of the usual
homoskedasticity-only and heteroskedasticity-consistent estimators of the asymptotic
variance of θ̂∗

n. As in the preceding section, these results show that neither of these es-
timators are consistent for the asymptotic variance of θ̂∗

n. In the special case with only
one treatment (i.e., |A| = 1), however, the heteroskedasticity-consistent estimator of the
asymptotic variance leads to tests that are asymptotically conservative in the sense that
they have limiting rejection probability under the null hypothesis no greater than the
nominal level; see Bugni, Canay, and Shaikh (2018, Theorem 4.3) and Section 5 below
for further discussion. In light of these results, the following theorem constructs a con-
sistent estimator of the asymptotic variance of θ̂∗

n. The theorem further establishes that
tests using this new estimator of the asymptotic variance are exact in the sense that they
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have limiting rejection probability under the null hypotheses equal to the nominal level.
Before proceeding, we note, however, that the theorem imposes the additional require-
ment that the randomization scheme achieves “strong balance,” that is, that τ(s) = 0 for
all s ∈ S . While it is possible to derive consistent estimators of the asymptotic variance
of θ̂∗

n even when this is not the case, it follows from Theorem D.1 in the Appendix that
when each test is used with a consistent estimator for the appropriate asymptotic vari-
ance, φsfe

n (X(n)) is in general less powerful along a sequence of local alternatives than
φsat
n (X(n)) except in the case of “strong balance.” Indeed, it follows immediately from

Theorems 3.1 and 4.1 that the asymptotic variance of θ̂∗
n coincides with the asymptotic

variance of θ̂n for randomization schemes that achieve “strong balance.” For this reason,
we view the case of randomization schemes that achieve “strong balance” as being the
most relevant.

Theorem 4.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mecha-
nism satisfies Assumption 4.1 with τ(s) = 0 for all s ∈ S . Let V̂hc be the heteroskedasticity-
consistent estimator of the asymptotic variance defined in (36) and let V̂H be defined as in
(15). Then

V̂sfe = V̂H + V̂hc
P→ Vsfe =VH +VỸ � (24)

In addition, for the problem of testing (4) at level α ∈ (0�1), φsfe
n (X(n)) defined in (20) with

V̂n = V̂sfe satisfies

lim
n→∞E

[
φsfe
n

(
X(n)

)]= α (25)

for Q additionally satisfying the null hypothesis, that is, Ψθ(Q)= c.

5. The case of a single treatment

In this section, we consider the special case where |A| = 1 to better illustrate the results
we derived for the general case and to compare them to those in Imbens and Rubin
(2015). When |A| = 1, θ(Q) is a scalar parameter and the asymptotic variances in Theo-
rems 3.1 and 4.1 become considerably simpler.

Consider first the the “fully saturated” linear regression. Applying Theorem 3.1 to the
case |A| = 1 shows that

√
n(θ̂n −θ(Q)) tends in distribution to a normal random variable

with mean zero and variance equal to

Vsat = ς2
H + ς2

Ỹ
�

where

ς2
H ≡

∑
s∈S

p(s)
(
E
[
m1(Zi)−m0(Zi)|Si = s

])2
� (26)

ς2
Ỹ

≡
∑
s∈S

p(s)

(σ2
Ỹ (0)

(s)

π0(s)
+

σ2
Ỹ (1)

(s)

π1(s)

)
� (27)
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In addition, it follows from Theorem 3.2 and (14) that the usual heteroskedasticity-
consistent estimator of the asymptotic variance of θ̂n converges in probability to ς2

Ỹ
.

As a result, tests based on θ̂n and this estimator for the asymptotic variance lead to over-
rejection under the null hypothesis whenever ς2

H > 0.
Imbens and Rubin (2015, Chapter 9) study the properties of θ̂n when |A| = 1 and the

treatment assignment mechanism is stratified block randomization, which satisfies the
hypotheses of Theorem 3.1. In contrast to our results, Imbens and Rubin (2015, Theo-
rem 9.2, p. 207) conclude that

√
n(θ̂n − θ(Q)) tends in distribution to a normal random

variable with mean zero and variance equal to ς2
Ỹ

. In other words, the results in Imbens
and Rubin (2015) coincide with our results when the model is sufficiently homogeneous
in the sense that ς2

H = 0. This condition can be alternatively written as

E
[
Yi(1)−Yi(0)|Si = s

]=E
[
Yi(1)−Yi(0)

]
for all s ∈ S� (28)

When this condition does not hold, however, our results differ from those in Imbens and
Rubin (2015) and lead to tests that are asymptotically exact under arbitrary heterogene-
ity. In Section 6, we show further that tests based on θ̂n and a consistent estimator of ς2

Ỹ

only may overreject dramatically when ς2
H is indeed positive.

Now consider the linear regression with “strata fixed effects.” Applying Theorem 4.1
to the case |A| = 1 shows that

√
n(θ̂∗

n − θ(Q)) tends in distribution to a normal random
variable with mean zero and variance equal to

Vsfe = ς2
H + ς2

Ỹ
+ ς2

A�

where ς2
H is as in (26), ς2

Ỹ
is as in (27), and

ς2
A = (1 − 2π1)

2

π1(1 −π1)

∑
s∈S

τ(s)p(s)
(
E
[
m1(Z)|S = s

]−E
[
m0(Z)|S = s

])2
� (29)

For treatment assignment mechanisms that achieve “strong balance,” we have in par-
ticular that Vsfe = ς2

H + ς2
Ỹ

. Furthermore, applying Lemmas C.6 and C.7 in the Appendix
to the case |A| = 1 and τ(s) = 0 shows that the usual homoskedasticity-only estimator of
the asymptotic variance is generally inconsistent for Vsfe, while the heteroskedasticity-
consistent estimator of the variance, V̂∗

hc, satisfies

V̂
∗
hc

P→
[

1
π1(1 −π1)

− 3
]
ς2
H + ς2

Ỹ
� (30)

which is strictly greater than Vsfe, unless ς2
H = 0 or π1 = 1

2 . In other words, when |A| = 1
and τ(s) = 0 for all s ∈ S , tests of (4) based on θ̂∗

n and the usual the heteroskedasticity-
consistent estimator of the asymptotic variance V̂∗

hc are asymptotically conservative un-
less ς2

H = 0 or π1 = 1
2 ; see Bugni, Canay, and Shaikh (2018, Theorem 4.3) for a formal

statement of this result.
Imbens and Rubin (2015, Chapter 9) also study the properties of θ̂∗

n when |A| = 1 and
the treatment assignment mechanism is stratified block randomization, which satisfies
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the hypotheses of Theorem 4.1. In particular, stratified block randomization satisfies
Assumption 4.1 with τ(s) = 0 for all s ∈ S , so ς2

A = 0. In contrast to our results, Imbens
and Rubin (2015, Theorem 9.1, p. 206) conclude that

√
n(θ̂∗

n−θ(Q)) tends in distribution
to a normal random variable with mean zero and variance that can be expressed in our
notation as [

1
π1(1 −π1)

− 3
]
ς2
H + ς2

Ỹ
�

This asymptotic variance is strictly greater than Vsfe unless ς2
H = 0 or π1 = 1

2 , and it coin-
cides with the limit in probability of the heteroskedasticity-consistent estimator of the
asymptotic variance in (30). As in the case of the “fully saturated” linear regression, the
results in Imbens and Rubin (2015) coincide with our results when the model is suffi-
ciently homogeneous in the sense that condition (28) holds. When this condition does
not hold, however, our results differ from those in Imbens and Rubin (2015) and lead to
tests that are asymptotically exact under arbitrary heterogeneity. In Section 6, we again
show that tests based on θ̂∗

n and the usual heteroskedasticity-consistent estimator of the
asymptotic variance may overreject dramatically under the null hypothesis.

Remark 5.1. An inspection of the proofs of Theorems 3.1 and 4.1 reveals that the ς2
H

term in the expressions for the variances of our limiting distributions of
√
n(θ̂n − θ(Q))

and
√
n(θ̂∗

n −θ(Q)) stems from the contribution of a term involving (
√
n(n(s)n −p(s)) : s ∈

S). It follows from this observation that it may be possible to reconcile the differences
between our analysis and that in Imbens and Rubin (2015, Chapter 9) by considering an
alternative sampling framework where n(s)

n is constant with n.

6. Monte Carlo simulations

In this section, we examine the finite-sample performance of several tests for the hy-
potheses in (4), including those introduced in Sections 3 and 4, with a simulation study.
For a ∈ A and 1 ≤ i ≤ n, potential outcomes are generated in the simulation study ac-
cording to the equation:

Yi(a) = μa + (ma(Zi)−Ma
)+ σa(Zi)εa�i� (31)

where μa, ma(Zi), σa(Zi), Ma, and εa�i are defined below. In each specification, n = 500,
{(Zi� ε0�i� ε1�i) : 1 ≤ i ≤ n} are i.i.d. with Zi, ε0�i, and ε1�i all being independent of each
other, and Ma = E[ma(Zi)]. We focus on the case |A| = 1 with π1(s) = π for all s ∈ S in
order to be able to compare the tests studied in Sections 3 and 4; but also consider the
case where π1(s) 
= π1(s

′) for s 
= s′.

Model 1: Zi ∼ Beta(2�2) (recentered and rescaled by the population mean and vari-
ance to have mean zero and variance one); σ0(Zi) = σ0 = 1 and σ1(Zi) = σ1; ε0�i ∼
N(0�1) and ε1�i ∼N(0�1); m0(Zi)= m1(Zi) = γZi. In this case,

Yi = μ0 + (μ1 −μ0)Ai + γZi +ηi�
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where

ηi = σ1Aiε1�i + σ0(1 −Ai)ε0�i

and E[ηi|Ai�Zi] = 0.

Model 2: As in Model 1, but m0(Zi) = −γ log(Zi + 3)I{Zi ≤ 1
2 }.

Model 3: As in Model 2, but σa(Zi)= σa|Zi|.
Model 4: Zi ∼ Unif(−2�2); ε0�i ∼ 1

3 t3 and ε1�i ∼ 1
3 t3; σa(Zi) = σa|Zi|; and

m0(Zi)=
{
γZ2

i if Zi ∈ [−1�1]
γZi otherwise

and m1(Zi)=
{
γZi if Zi ∈ [−1�1]
γZ2

i otherwise
�

Treatment status is determined according to one of the following four different covariate-
adaptive randomization schemes:

SRS: Treatment assignment is generated as in Example 2.1.

SBR: Treatment assignment is generated as in Example 2.2.

In each case, strata are determined by dividing the support of Zi into |S| intervals
of equal length and letting S(Zi) be the function that returns the interval in which
Zi lies. In all cases, observed outcomes Yi are generated according to (1). Finally, for
each of the above specifications, we consider different values of (|S|�π�γ�σ1) and con-
sider both (μ0�μ1) = (0�0) (i.e., under the null hypothesis that θ = μ1 − μ0 = 0) and
(μ0�μ1)= (0�0�2) (i.e., under the alternative hypothesis with θ = 0�2).

The results of our simulations are presented in Tables 1–4 below. Rejection probabil-
ities are computed using 104 replications. Columns are labeled in the following way:

SAT: The t-test from the “fully saturated” linear regression studied in Section 3. We
report results for this test using the homoskedasticity-only (HO), heteroskedasticity-
robust (HC), and the new (NEW) consistent (as in Theorem 3.3), estimators of the
asymptotic variance.

SFE: The t-test from the linear reression with “strata fixed effects” studied in Section 4.
We report results for this test using the homoskedasticity-only (HO), heteroskedasticity-
robust (HC), and the new (NEW) consistent (as in Theorem 3.3), estimators of the
asymptotic variance.

Table 1 displays the results of our baseline specification, where (|S|�π�γ�σ1) =
(10�0�3�1�1). Table 2 displays the results for (|S|�π�γ�σ1) = (10�0�3�2�1), to explore sen-
sitivity to changes in γ. Tables 3 and 4 replace π = 0�3 with π = 0�7, so (|S|�π�γ�σ1) =
(10�0�7�1�1) and (|S|�π�γ�σ1) = (10�0�7�2�1). Finally, Table 5 considers the baseline
specification but with π1(s) 
= π1(s

′) for s 
= s′, that is,

(
π1(1)� � � � �π1

(|S|))= (0�20�0�25�0�30�0�35�0�40�0�60�0�65�0�70�0�75�0�80)� (32)

We organize our discussion of the results by test:
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Table 1. Treatment assignment implemented via simple random sampling (SRS) and strati-
fied block randomization (SBR). SAT and SFE tests implemented with homoskedastic-only (HO),
heteroskedasticity-consistent (HC), and newly developed (NEW) standard errors. Parameter val-
ues: (|S|�π�γ�σ1) = (10�0�3�1�1).

Rejection rate under H0: θ = 0 Rejection rate under H1: θ = 0�2

SAT SFE SAT SFE

M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW

1 SRS 5�13 5�30 5�27 5�08 5�14 5�17 81�96 82�11 82�08 82�01 82�06 82�15
SBR 4�74 4�98 4�92 4�71 4�88 4�93 82�25 82�44 82�32 82�21 82�17 82�31

2 SRS 6�65 6�84 4�93 6�31 5�05 5�08 80�18 80�77 75�71 75�91 72�58 72�66
SBR 6�75 4�63 4�60 4�74 3�58 4�63 79�63 79�94 75�14 75�75 71�91 75�77

3 SRS 7�69 7�79 5�17 6�25 4�86 4�89 84�84 84�93 80�87 80�10 76�98 77�06
SBR 7�19 4�59 4�52 4�53 3�34 4�59 85�11 85�16 80�58 81�14 77�75 81�08

4 SRS 20�04 19�22 5�06 10�80 5�12 5�13 92�44 91�93 79�17 76�45 65�00 65�11
SBR 19�92 19�16 5�19 5�92 2�21 5�35 92�91 92�37 79�10 80�19 67�16 78�98

SAT: As expected in light of Theorems 3.1 and 3.2, the test φsat
n (X(n)) in (10) when

V̂n is either the homoskedasticity-only or heteroskedasticity-consistent estimator of the
asymptotic variance may over-reject under the null hypothesis. Indeed, in some cases
(Model 4 in Table 2) the rejection probability under the null hypothesis could be as
high as 32% for the homoskedasticity-only case and 30% for the heteroskedasticity-
consistent case. This overrejection happens both, under simple random sampling
and stratified block randomization. Finally, and consistent with the results in Sec-
tion 5, whenever Q is such that VH = 0, as it is the case in Model 1, the test with the

Table 2. Treatment assignment implemented via simple random sampling (SRS) and strati-
fied block randomization (SBR). SAT and SFE tests implemented with homoskedastic-only (HO),
heteroskedasticity-consistent (HC), and newly developed (NEW) standard errors. Parameter val-
ues: (|S|�π�γ�σ1) = (10�0�3�2�

√
2).

Rejection rate under H0: θ = 0 Rejection rate under H1: θ = 0�2

SAT SFE SAT SFE

M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW

1 SRS 8�57 5�06 5�07 8�41 4�85 4�87 66�73 58�45 58�55 67�22 58�37 58�47
SBR 8�51 5�10 5�05 8�42 5�00 5�06 67�57 59�03 58�79 67�43 58�64 58�80

2 SRS 14�35 10�16 5�31 10�85 5�39 5�44 65�42 58�17 45�91 53�33 39�88 39�93
SBR 14�58 9�80 5�06 7�50 3�15 5�10 65�87 58�93 46�96 54�53 39�72 47�68

3 SRS 14�73 10�45 5�25 10�23 5�09 5�10 69�79 63�22 49�71 56�39 43�53 43�64
SBR 15�02 10�55 4�88 6�96 2�89 4�97 71�28 64�39 49�93 57�48 41�88 51�10

4 SRS 31�22 26�06 5�28 12�35 5�39 5�41 73�57 69�41 36�25 42�20 26�50 26�56
SBR 32�00 26�69 5�00 6�56 1�82 5�09 74�30 69�97 36�60 40�38 21�48 36�56
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Table 3. Treatment assignment implemented via simple random sampling (SRS) and strati-
fied block randomization (SBR). SAT and SFE tests implemented with homoskedastic-only (HO),
heteroskedasticity-consistent (HC), and newly developed (NEW) standard errors. Parameter val-
ues: (|S|�π�γ�σ1) = (10�0�7�1�1).

Rejection rate under H0: θ = 0 Rejection rate under H1: θ = 0�2

SAT SFE SAT SFE

M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW

1 SRS 5�08 5�29 5�23 4�96 5�01 5�02 81�75 82�12 82�00 81�99 81�97 82�01
SBR 5�02 5�10 5�06 4�95 4�95 5�00 82�76 82�93 82�79 82�65 82�73 82�82

2 SRS 6�72 6�94 4�83 6�26 5�01 5�03 79�85 80�08 75�32 74�87 71�56 71�63
SBR 7�05 7�11 5�08 4�99 3�93 5�05 80�46 80�54 76�61 75�77 72�26 76�04

3 SRS 7�23 7�58 5�03 6�44 5�03 5�05 85�81 85�82 81�28 80�35 77�09 77�12
SBR 7�56 7�70 5�14 5�07 3�92 5�16 87�56 87�62 83�07 82�40 78�71 82�75

4 SRS 18�46 19�91 5�43 10�02 5�20 5�21 92�45 93�12 80�79 76�88 66�84 66�95
SBR 18�25 19�63 5�93 5�21 2�09 5�83 92�98 93�33 82�57 81�27 71�75 82�77

heteroskedasticity-consistent estimator of the asymptotic variance is asymptotically ex-
act.

According to Theorem 3.3, the test φsat
n (X(n)) in (10) when V̂n is given by the new con-

sistent estimator of the asymptotic variance in (16) is asymptotically exact across all the
specifications we consider. Indeed, the rejection probability under the null hypothesis
is very close to the nominal level in all models and all tables. The rejection probability
under the alternative hypothesis is the highest under simple random sampling among
the tests that are asymptotically exact and do not overreject under the null hypothesis.

Table 4. Treatment assignment implemented via simple random sampling (SRS) and strati-
fied block randomization (SBR). SAT and SFE tests implemented with homoskedastic-only (HO),
heteroskedasticity-consistent (HC), and newly developed (NEW) standard errors. Parameter val-
ues: (|S|�π�γ�σ1) = (10�0�7�2�

√
2).

Rejection rate under H0: θ = 0 Rejection rate under H1: θ = 0�2

SAT SFE SAT SFE

M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW

1 SRS 2�72 5�55 5�45 2�79 5�35 5�38 58�45 68�64 68�35 59�02 68�51 68�62
SBR 2�66 5�23 5�17 2�64 5�13 5�14 58�79 68�91 68�79 58�79 68�74 68�80

2 SRS 7�18 11�48 5�28 6�22 5�44 5�47 58�35 66�71 51�98 47�35 45�08 45�21
SBR 7�18 11�19 4�99 3�19 2�80 5�02 58�95 66�52 53�69 45�17 43�14 52�74

3 SRS 8�00 12�36 5�13 6�43 5�24 5�29 64�51 71�87 56�25 51�30 47�55 47�61
SBR 7�63 11�88 4�99 3�35 2�83 5�00 65�91 73�20 58�83 50�41 47�03 57�71

4 SRS 24�98 30�67 5�12 10�82 5�61 5�62 69�65 74�39 39�07 39�87 27�80 27�86
SBR 24�81 30�72 6�01 4�49 1�50 5�81 70�74 75�42 41�60 37�57 24�20 41�41
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Table 5. Treatment assignment implemented via simple random sampling (SRS) and strati-
fied block randomization (SBR). SAT and SFE tests implemented with homoskedastic-only (HO),
heteroskedasticity-consistent (HC), and newly developed (NEW) standard errors. Parameter val-
ues: (|S|�π�γ�σ1) = (10�π1(s)�1�1) with π1(s) as in (32).

Rejection rate under H0: θ = 0 Rejection rate under H1: θ = 0�2

SAT SFE SAT SFE

M CAR HO HC NEW HO HC NEW HO HC NEW HO HC NEW

1 SRS 5�20 5�47 5�47 5�08 5�12 5�15 81�63 82�48 82�48 82�80 82�71 82�75
SBR 5�27 5�39 5�39 5�32 5�42 5�44 83�15 83�48 83�48 83�49 83�43 83�58

2 SRS 6�74 7�18 5�70 9�05 7�13 9�51 79�53 80�14 76�98 87�24 84�66 87�61
SBR 7�18 7�33 5�63 8�92 7�05 9�08 80�57 80�91 77�23 90�72 88�61 90�91

3 SRS 8�89 8�14 6�34 9�49 8�18 8�99 85�19 84�10 81�04 92�03 90�57 91�54
SBR 8�24 7�56 5�53 9�03 7�53 8�37 86�51 85�38 81�77 94�92 93�76 94�42

4 SRS 19�74 18�16 6�41 60�82 45�51 59�43 91�77 90�90 80�14 12�92 5�62 12�42
SBR 19�71 18�14 6�69 67�13 48�22 66�08 91�61 90�77 80�78 4�42 1�12 4�00

Under stratified block randomization, and given that in this case τ(s) = 0 for all s ∈ S ,
the rejection probability under the alternative hypothesis is effectively the same as that
of φsfe

n (X(n)) with the new consistent estimator of the asymptotic variance in (24). These
results are in line with the theoretical results described in Section 4. Finally, Table 5 illus-
trates that the results for φsat

n (X(n)) with the new consistent estimator of the asymptotic
variance are not affected by whether π1(s) is the same across strata s ∈ S or not.

SFE: As expected from Theorem 4.1 and the subsequent discussion, the testφsfe
n (X(n))

in (20) when V̂n is the homoskedasticity-only estimator of the asymptotic variance
could lead to overrejection or underrejection, depending on the specification. For ex-
ample, the rejection probability under the null hypothesis in Table 2 could be as high
as 12�25%, while in Table 4 could be as low as 2�64%. On the other hand, when V̂n is the
heteroskedasticity-consistent estimator of the asymptotic variance, this test is asymp-
totically conservative; in line with the results in Bugni, Canay, and Shaikh (2018) and
Section 5. Indeed, the rejection probability under the null hypothesis is close to 2% in
Model 4 under stratified block randomization for all the specifications we consider. Fi-
nally, and consistent with the results in Section 5, whenever Q is such that VH = 0, as
it is the case in Model 1, the test with the heteroskedasticity-consistent estimator of the
asymptotic variance is asymptotically exact.

According with Theorem 4.2, the test φsfe
n (X(n)) in (20) when V̂n is given by the new

consistent estimator of the asymptotic variance in (24) is asymptotically exact across
all the specifications we consider. The rejection probability under the null hypothesis
is very close to the nominal level in all models and all tables. The rejection probability
under the alternative hypothesis is similar to that of φsat

n (X(n)) with V̂n = V̂sat under
stratified block randomization, but often below the rejection probability of that same
test under simple random sampling. These results are again in line with the theoretical
results discuss in Section 4. Finally, Table 5 illustrates that φsfe

n (X(n)) is only a valid test



1766 Bugni, Canay, and Shaikh Quantitative Economics 10 (2019)

for the null in (4) when π1(s) = π for all s ∈ S and may otherwise overreject under the
null hypothesis.

7. Implications for empirical practice

When the target proportion of units being assigned to each treatment varies across
strata, we recommend using the test φsat

n based on ordinary least squares estimation
of the “fully saturated” linear regression and the consistent estimator of the asymptotic
variance that we derive in Theorem 3.3. Importantly, tests based on these estimators
with the usual heteroskedasticity-consistent estimator of the asymptotic variance may
be invalid in the sense that they may have limiting rejection probability under the null
hypothesis strictly greater than the nominal level. When the target proportion of units
being assigned to each treatment does not vary across strata, one may additionally con-
sider use of the test φsfe

n based on ordinary least squares estimation of the linear regres-
sion with “strata fixed effects” and the consistent estimator of the asymptotic variance
that we derive in Theorem 4.2. Our theoretical results results reveal that for a given func-
tion mapping Zi into strata fixed, the power of φsfe

n is highest when using a randomiza-
tion schemes that satisfies Assumption 4.1(c) with τ(s)= 0 for all s ∈ S , such as stratified
block randomization. On the other hand, φsat

n is in general weakly preferred to φsfe
n and

may be strictly preferred for randomization schemes that satisfy Assumption 4.1(c) with
τ(s) > 0 for some s ∈ S . For simplicity, it may therefore be preferable to use φsat

n .
In this paper, we do not consider further questions about “optimal” treatment as-

signment, but in conclusion, we mention two recent papers on this topic. Building upon
our results, Tabord-Meehan (2018) considered optimization of the power of φsat

n over
different functions mapping Zi into strata using stratification trees. Bai (2018), on the
other hand, considered minimization of the mean squared error of the difference-in-
means estimator of the average treatment effect over a general class of randomization
mechanisms that, importantly, includes mechanisms with a “large” number of strata.

8. Empirical illustration

We conclude our paper with an empirical illustration using data from Chong, Cohen,
Field, Nakasone, and Torero (2016), who studied the effect of iron deficiency anemia
(i.e., anemia caused by a lack of iron) on school-age children’s educational attainment
and cognitive ability in Peru. The data used in this experiment are publicly available in
the AEA website at https://www.aeaweb.org/articles?id=10.1257/app.20140494.

8.1 Empirical setting

We now briefly summarize the empirical setting; see Chong et al. (2016) for a more de-
tailed description. According to the medical literature, iron deficiency anemia may im-
pair cognitive function, memory, and attention span. In this way, iron deficiency anemia
may significantly increase the cost of human capital accumulation for school-age chil-
dren and lead to nutrition-based poverty traps. Chong et al. (2016) investigated whether

https://www.aeaweb.org/articles?id=10.1257/app.20140494
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Table 6. Sample sizes for each combination of stratum and treatment.

s = 1 s = 2 s = 3 s = 4 s = 5 Total

a= 0 (placebo video) 15 19 16 12 10 72
a= 1 (soccer video) 16 19 15 10 10 70
a= 2 (doctor video) 17 20 15 11 10 73

Total 48 58 46 33 30 215

showing students promotional videos can incentivize them to increase their iron intake
and thus improve their academic performance.

The units in this experiment are 219 students in a rural secondary school in the im-
poverished Cajamarca district of Peru between October and December in 2009. Dur-
ing this period, these students were exposed to short instructional videos when logging
into their personal computers at school. Each student was randomly assigned to one of
three types of videos: two treatments and a control. The first treatment video featured a
popular soccer player encouraging the students to consume iron supplements to max-
imize their energy. The second treatment video featured a doctor encouraging them to
consume iron supplements for their overall health. Finally, the control video featured a
dentist who encouraged oral hygiene without mentioning iron in any way. Throughout
this experiment, researchers additionally stocked the local clinic with iron supplements,
which were provided for free to any student who requested them.

Students were assigned to one of the three types of videos using stratified block ran-
domization, where stratification occurred by grade, taking values s ∈ S = {1�2�3�4�5}.
As explained in footnote 17 of Chong et al. (2016), within each grade, the researchers
assigned one-third of the students to each video type, that is, πa(s) = 1/3 for all a ∈ A0 =
{0�1�2} and s ∈ S . Table 6 describes the sample sizes for each combination of stratum
and treatment. Note that the sample consists of 215 students rather than 219 students
because four students were excluded from the study for various reasons; see, for exam-
ple, footnote 24 in Chong et al. (2016), which explains that two students failed to turn in
a required consent form. We conjecture that these exclusions explain the discrepancies
between the observed treatment proportions and πa(s) observed in Table 6. Note fur-
ther that since in this case πa(s) does not depend on s, our results imply that we could
analyze the experiment using either the “fully saturated” linear regression described in
Section 3 or the linear regression with “strata fixed effects” described in Section 4. Below
we focus on the former, but note that the latter provides similar results.

8.2 Results

Chong et al. (2016) examined the effect of the treatment videos relative to the control
video on a variety of cognitive ability and educational attainment outcomes. We focus
on academic achievement, as measured by a student’s average grade during the last two
quarters of the 2009 academic year in five subjects: math, foreign language, social sci-
ence, science, and communications. As explained by the authors, this constitutes one of
the primary outcomes of interest in Chong et al. (2016).
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Table 7. Inference about the average effect of treatments a ∈ A = {1�2} (relative to the control)
on academic achievement. “New” standard errors correspond to the ones we derive in this paper,
while hc standard errors are the default “robust” standard errors in Stata.

Coef. s.e. t-stat p-value [95% Conf. Int.]

SAT regression: “new” standard errors
θ̂n�1 (soccer video) −0�051 0�206 −0�248 0�805 −0�458 0�356
θ̂n�2 (doctor video) 0�409 0�206 1�981 0�049 −0�002 0�816

SAT regression: hc standard errors
θ̂n�1 (soccer video) −0�051 0�206 −0�248 0�804 −0�457 0�354
θ̂n�2 (doctor video) 0�409 0�203 2�013 0�046 −0�008 0�810

We present our results in Table 7, which was computed using our car_sat Stata
package available at https://bitbucket.org/iacanay/car-stata. In both the top and bot-
tom half of Table 7, the first column reports point estimates of θa(Q) for the two treat-
ment videos a ∈ A = {1�2} that we obtained from the “fully saturated” linear regression,
that is,

θ̂n�a =
5∑

s=1

n(s)

n
β̂n�a(s)�

where β̂n�a(s) is the ordinary least squares estimator of βa(s) in the equation

Yi =
5∑

s=1

δ(s)I{Si = s} +
2∑

a=1

5∑
s=1

βa(s)I{Ai = a�Si = s} + ui�

The remaining columns report standard errors, the resulting t-statistic, a p-value for a
two-sided test of the null hypothesis that θa(Q) = 0; and a 95% confidence interval for
θa(Q). The top and bottom half of Table 7 differ only through the standard errors. The
top half reports results with the “new” standard errors computed using our estimator of
the asymptotic variance, V̂sat defined in (16). For our subsequent discussion, it is useful
to recall that

V̂sat = V̂H + V̂hc�

where, in the context of our application,

V̂H =
5∑

s=1

n(s)

n

(
β̂n�1(s)− θ̂n�1
β̂n�2(s)− θ̂n�2

)(
β̂n�1(s)− θ̂n�1
β̂n�2(s)− θ̂n�2

)′
(33)

and V̂hc is the usual heteroskedasticity-consistent estimator of the asymptotic variance
defined in (36). The bottom half of Table 7 reports results with the standard errors com-
puted using V̂hc.

Since V̂sat = V̂H + V̂hc and V̂H is positive semidefinite, the “new” standard errors
are larger than the usual heteroskedasticity-consistent standard errors. The differences,

https://bitbucket.org/iacanay/car-stata
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however, in this instance are small and do not lead to any meaningful differences in
terms of the conclusions we draw from the experiment when testing either the null hy-
pothesis that θ1(Q) = 0 or the null hypothesis that θ2(Q) = 0 at the conventional 5%
significance level. To gain further insight into the magnitude of these differences, it is
instructive to examine V̂H and V̂hc in more detail, which are displayed below:

V̂H =
(

0�0630 0�0385
0�0385 0�291

)
� V̂hc =

(
9�101 4�503
4�503 8�879

)
�

We see that V̂H is close to zero and at least an order of magnitude smaller than V̂hc. By
inspecting (33), we see that V̂H being close to zero implies that β̂n�1(s) and β̂n�2(s) are
nearly constant across the five strata, which in turn suggests that stratification is nearly
irrelevant in this particular application in the sense that E[Yi(a)−Yi(0)|Si] nearly equals
E[Yi(a)−Yi(0)] for each a ∈ {1�2}.

Appendix A: Additional notation

Throughout the Appendix, we employ notation in Table 8, not necessarily introduced in
the text.

In addition, we often transform objects that are indexed by (a� s) ∈ A×S into vectors
or matrices, using the following conventions. For X(a) being a scalar object indexed over
a ∈ A, we use (X(a) : a ∈ A) to denote the |A|-dimensional vector (X(1)� � � � �X(|A|))′.
For Xa(s) being a scalar object indexed by (a� s) ∈ A × S , we use (Xa(s) : (a� s) ∈ A × S)
to denote the (|A| × |S|)-dimensional column vector where the order of the indices is as
follows:

(
Xa(s) : (a� s) ∈ A× S

)= (X1(1)� � � � �X|A|(1)�X1(2)� � � � �X|A|(2)� � � �
)′
�

Finally, throughout the Appendix we use L
(j)
n�a(s) and L

(j)
n for j = 1�2� � � � , to denote scalar

objects and matrices/vectors that may be redefined from theorem to theorem.

Table 8. Useful notation.

σ2
X(s) For a random variable X, σ2

X(s) = Var[X|S = s]
σ2
X For a random variable X, σ2

X = Var[X]
μa For a ∈ A0, E[Yi(a)]
Ỹi(a) For a ∈ A0, Yi(a)−E[Yi(a)|Si]
ma(Zi) For a ∈ A0, E[Yi(a)|Zi] −μa

n(s) Number of individuals in strata s ∈ S
na(s) Number of individuals in treatment a ∈ A0 in strata s ∈ S
ι|A| |A|-dimensional column vector of ones
O (|A| × |S|)-dimensional matrix of zeros
I|A| |A|-dimensional identity matrix
Js (|S| × |S|)-dimensional matrix with a 1 on the (s� s)th coordinate and zeros otherwise
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Appendix B: Proof of main theorems

B.1 Proof of Theorem 3.1

Let Cn be the matrix of covariate associated with the regression in (7), that is, the matrix

with ith row given by

Ci =
[(
I{Si = s} : s ∈ S

)′
�
(
I{Ai = a�Si = s} : (a� s) ∈ A× S

)′]
�

Let Rn be a matrix with |A| rows and (|S| + |A| × |S|) columns defined as

Rn =
[
O�

n(1)
n

I|A|� � � � �
n
(|S|)
n

I|A|
]
� (34)

where O and I|A| are defined in Table 8. Using this notation, we can write

θ̂n = Rn

[ (
δ̂n(s) : s ∈ S

)(
β̂n�a(s) : (a� s) ∈ A× S

)
]
�

where δ̂n(s) and β̂n�a(s) are the resulting estimators of δ(s) and βa(s) in (7), respectively.

Now consider the following derivation:

√
n
(
θ̂n − θ(Q)

) = √
n

(
Rn

(
1
n
C

′
nCn

)−1 1
n
C

′
nYn − θ(Q)

)

=
(∑
s∈S

n(s)

na(s)

[
1√
n

n∑
i=1

I{Ai = a�Si = s}Ỹi(a)

]

−
∑
s∈S

n(s)

n0(s)

[
1√
n

n∑
i=1

I{Ai = 0� Si = s}Ỹi(0)

]

+
∑
s∈S

√
n

(
n(s)

n
−p(s)

)
E
[
ma(Z)−m0(Z)|S = s

] : a ∈ A
)

=
(∑
s∈S

(
L(1)
n�a(s)−L(1)

n�0(s)
) : a ∈ A

)
+
(∑
s∈S

L(2)
n�a(s) : a ∈ A

)
+ oP(1)�

where for (a� s) ∈ A× S ,

L(1)
n�a(s) ≡ 1

πa(s)

[
1√
n

n∑
i=1

I{Ai = a�Si = s}Ỹi(a)

]
�

L(2)
n�a(s) ≡ √

n

(
n(s)

n
−p(s)

)
E
[
ma(Z)−m0(Z)|S = s

]
�
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By Lemma C.1 and some additional calculations, it follows that⎛
⎜⎜⎜⎝
(∑
s∈S

(
L(1)
n�a(s)−L(1)

n�0(s)
) : a ∈ A

)
(∑
s∈S

L(2)
n�a(s) : a ∈ A

)
⎞
⎟⎟⎟⎠ d→ N

((
0
0

)
�

(
VỸ 0
0 VH

))
�

where VỸ is as in (12) and VH is as in (11). Importantly, to get VH for the second term
we used that

∑
s∈S p(s)E[ma(Z)−m0(Z)|S = s] = 0 for all a ∈ A.

B.2 Proof of Theorem 3.2

The homoskedasticity-only estimator of the asymptotic variance for the regression in (7)
is

V̂ho =
(

1
n

n∑
i=1

û2
i

)
Rn

(
1
n
C

′
nCn

)−1
R

′
n� (35)

where {ûi : 1 ≤ i ≤ n} are the least squares residuals. The result then follows immediately
from

1
n

n∑
i=1

û2
i

P→
∑

(a�s)∈A0×S
p(s)πa(s)σ

2
Ỹ (a)

(s)�

which follows from Lemma C.5, and

Rn

(
1
n
C

′
nCn

)−1
R

′
n

P→
[∑
s∈S

p(s)

π0(s)
ι|A|ι′|A| + diag

(∑
s∈S

p(s)

πa(s)
: a ∈ A

)]

which follows from Lemma C.3, (34), and some additional calculations.
The heteroskedasticity-consistent estimator of the asymptotic variance for the re-

gression in (7) is

V̂hc =Rn

[(
1
n
C

′
nCn

)−1(1
n
C

′
n diag

(
û2
i : 1 ≤ i ≤ n

)
Cn

)(
1
n
C

′
nCn

)−1]
R

′
n� (36)

First, note that 1
nC

′
n diag(û2

i : 1 ≤ i ≤ n)Cn equals⎡
⎢⎢⎢⎢⎣

diag

(
1
n

n∑
i=1

û2
i I{Si = s} : s ∈ S

) ∑
s∈S

Js ⊗
(

1
n

n∑
i=1

û2
i I{Ai = a�Si = s} : a ∈A

)′

∑
s∈S

Js ⊗
(

1
n

n∑
i=1

û2
i I{Ai = a�Si = s} : a ∈A

)
diag

(
1
n

n∑
i=1

û2
i I{Ai = a�Si = s} : (a� s) ∈A× S

)
⎤
⎥⎥⎥⎥⎦ �

which follows from Lemma C.3. By Lemma C.4, this matrix converges in probability to⎡
⎢⎢⎢⎣

diag
(∑
a∈A0

p(s)πa(s)σ
2
Ỹ (a)

(s) : s ∈ S
) ∑

s∈S
Js ⊗ (

p(s)πa(s)σ
2
Ỹ (a)

(s) : a ∈ A
)′

∑
s∈S

Js ⊗ (
p(s)πa(s)σ

2
Ỹ (a)

(s) : a ∈ A
)

diag
(
p(s)πa(s)σ

2
Ỹ (a)

(s) : (a� s) ∈ A× S
)
⎤
⎥⎥⎥⎦ �
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The result follows by combining this with Lemma C.3 and doing some additional calcu-
lations.

B.3 Proof of Theorem 3.3

By Theorem 3.2, it follows that

V̂hc
P→
∑
s∈S

p(s)σ2
Ỹ (0)

(s)

π0(s)
ι|A|ι′|A| + diag

(∑
s∈S

p(s)σ2
Ỹ (a)

(s)

πa(s)
: a ∈ A

)
�

By Lemma C.3 and for any a ∈ A,

(
β̂n�a(s)− θ̂n�a

) P→ E
[
ma(Z)−m0(Z)|S = s

]
�

which in turn implies that

V̂H =
∑
s∈S

n(s)

n

(
β̂n�a(s)− θ̂n�a : a ∈ A

)(
β̂n�a(s)− θ̂n�a : a ∈ A

)′
P→
∑
s∈S

p(s)
(
E
[
ma(Z)−m0(Z)|S = s

] : a ∈ A
)(
E
[
ma(Z)−m0(Z)|S = s

] : a ∈ A
)′
�

where we used n(s)
n

P→ p(s). By the continuous mapping theorem, we conclude that

V̂sat
P→ Vsat. By Theorem 3.1, limn→∞ E[φsat

n (X(n))] = α follows immediately whenever
Q is such that Ψθ(Q)= c.

B.4 Proof of Theorem 4.1

Let Mn ≡ In −Sn(S
′
nSn)

−1S′
n denote the projection on the orthogonal complement of the

column space of Sn, where Sn is the matrix with ith row given by (I{Si = s} : s ∈ S)′. By
the Frisch–Waugh–Lovell theorem,

θ̂∗
n = (A′

nM
′
nMnAn

)−1(
A

′
nM

′
nYn

)
�

where Yn = (Yi : 1 ≤ i ≤ n) and An is the matrix with ith row given by (I{Ai = a} : a ∈ A)′.
Next, notice that

MnAn =
((

I{Ai = a} −
∑
s∈S

I{Si = s}na(s)
n(s)

: a ∈ A
)′

: 1 ≤ i ≤ n

)

is a (n × |A|)-dimensional matrix, where we have used that S′
nSn = diag(n(s) : s ∈ S)

and that S′
nAn is a (|S| × |A|)-dimensional matrix with (s�a)th element given by na(s).

It follows from the above derivation and Assumption 4.1 that the (a� ã) element of
1
nA

′
nM

′
nMnAn satisfies

I{a = ã}
∑
s∈S

na(s)

n
−
∑
s̃∈S

na(s̃)nã(s̃)

n(s̃)n

P→ I{a = ã}πa −πaπã�
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and so by the continuous mapping theorem we get

(
1
n
A

′
nM

′
nMnAn

)−1
P→ diag

(
1
πa

: a ∈ A
)

+ 1
π0

ι|A|ι′|A|�

Now consider the matrix 1
nA

′
nM

′
nYn. Simple manipulations shows that

1
n
A

′
nM

′
nYn =

(∑
s∈S

1
n

n∑
i=1

I{Ai = a�Si = s}Ỹi(a)

−
∑
s∈S

∑
ã∈A0

na(s)

n(s)

1
n

n∑
i=1

I{Ai = ã� Si = s}Ỹi(ã)

+
∑
s∈S

na(s)

n(s)

n(s)

n
E
[
ma(Z)|S = s

]

−
∑
ã∈A0

∑
s∈S

na(s)

n(s)

nã(s)

n(s)

n(s)

n
E
[
mã(Z)|S = s

] : a ∈ A
)
�

We conclude that

√
n
(
θ̂∗
n − θ(Q)

)=
(

diag
(

1
πa

: a ∈ A
)

+ 1
π0

ι|A|ι′|A| + oP(1)
)

1√
n
A

′
nM

′
nYn�

Next, we derive the limiting distribution of 1√
n
A′
nM

′
nYn. In order to do this, write

1√
n
A

′
nM

′
nYn = Ln + oP(1)�

where

Ln =
(∑
s∈S

1√
n

n∑
i=1

I{Ai = a�Si = s}Ỹi(a)

−πa

∑
s∈S

∑
ã∈A0

1√
n

n∑
i=1

I{Ai = ã� Si = s}Ỹi(ã)

+πa

∑
s∈S

√
n

(
n(s)

n
−p(s)

)[
E
[
ma(Z)|S = s

]− ∑
ã∈A0

πãE
[
mã(Z)|S = s

]]

+
∑
s∈S

√
n

(
na(s)

n(s)
−πa

)
p(s)

[
E
[
ma(Z)|S = s

]− ∑
ã∈A0

πãE
[
mã(Z)|S = s

]]

−πa

∑
ã∈A0

∑
s∈S

√
n

(
nã(s)

n(s)
−πã

)
p(s)E

[
mã(Z)|S = s

] : a ∈ A
)
�
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Since the right-hand side is OP(1), then Slutzky’s theorem and some simple manipula-
tions show that

√
n
(
θ̂∗
n − θ(Q)

) =
(

diag
(

1
πa

: a ∈ A
)

+ 1
π0

ι|A|ι′|A|
)
Ln + oP(1)

=
(∑
s∈S

(
L̄(1)
n�a(s)− L̄(1)

n�0(s)
) : a ∈ A

)
+
(∑
s∈S

L̄(2)
n�a(s) : a ∈ A

)

+
(∑
s∈S

(
L̄(3)
n�a(s)− L̄

(3)
n�0(s)

) : a ∈ A
)

+ oP(1)�

where for (a� s) ∈ A× S ,

L̄(1)
n�a(s) ≡ 1

πa

[
1√
n

n∑
i=1

I{Ai = a�Si = s}Ỹi(a)

]
�

L̄(2)
n�a(s) ≡ √

n

(
n(s)

n
−p(s)

)
E
[
ma(Z)−m0(Z)|S = s

]
�

L̄(3)
n�a(s) ≡ √

n

(
na(s)

n(s)
−πa

)
p(s)

πa

[
E
[
ma(Z)|S = s

]− ∑
ã∈A

πãE
[
mã(Z)|S = s

]]
�

By Lemma C.2 and some additional calculations, it follows that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(∑
s∈S

(
L̄(1)
n�a(s)− L̄(1)

n�0(s)
) : a ∈ A

)
(∑
s∈S

L̄(2)
n�a(s) : a ∈ A

)
(∑
s∈S

(
L̄(3)
n�a(s)− L̄(3)

n�0(s)
) : a ∈ A

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

d→N

⎛
⎜⎝
⎛
⎜⎝0

0
0

⎞
⎟⎠ �

⎛
⎜⎝VỸ 0 0

0 VH 0
0 0 VA

⎞
⎟⎠
⎞
⎟⎠ �

where VỸ is as in (12) with πa(s) = πa for all (a� s) ∈ A0 × S , VH is as in (11), and

VA =
(∑
s∈S

p(s)

(
ξa(s)ξa′(s)

ΣD(s)[a�a′]
πaπa′

− ξa(s)ξ0(s)
ΣD(s)[a�0]
πaπ0

− ξa′(s)ξ0(s)
ΣD(s)[a′�0]
πa′π0

+ ξ0(s)ξ0(s)
ΣD(s)[0�0]
π0π0

)
: (a�a′) ∈ A×A

)

with

ξa(s) ≡ E
[
ma(Zi)|Si = s

]− ∑
a′∈A0

πa′E
[
ma′(Zi|Si = s)

]
�

Importantly, to get VH for the second term we used that
∑

s∈S p(s)E[ma(Z)−m0(Z)|S =
s] = 0 for all a ∈ A.
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Appendix C: Auxiliary results

Lemma C.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mecha-
nism satisfies Assumption 2.2. Define

L
(1)
n ≡

(
1√
n

n∑
i=1

I{Ai = a�Si = s}Ỹi(a) : (a� s) ∈ A0 × S
)
� (37)

L
(2)
n ≡

(√
n

(
n(s)

n
−p(s)

)
: s ∈ S

)
� (38)

and Ln = (L
(1)′
n �L

(2)′
n )′. It follows that

Ln
d→ N

((
0
0

)
�

(
Σ1 0
0 Σ2

))
�

where

Σ1 = diag
(
πa(s)p(s)σ

2
Ỹ (a)

(s) : (a� s) ∈ A0 × S
)
�

Σ2 = diag
(
p(s) : s ∈ S

)− (p(s) : s ∈ S
)(
p(s) : s ∈ S

)′
�

Proof. To prove our result, we first show that

{
L
(1)
n �L(2)

n

} d= {L∗(1)
n �L(2)

n

}+ oP(1)�

for a random vector L∗(1)
n satisfying L

∗(1)
n ⊥⊥ L

(2)
n and L

∗(1)
n

d→ N(0�Σ1). We then combine

this result with the fact that L(2)
n

d→ N(0�Σ2), which follows from W (n) consisting of n
i.i.d. observations and the CLT.

Under the assumption that W (n) is i.i.d. and Assumption 2.2(a), the distribution
of L

(1)
n is the same as the distribution of the same quantity where units are ordered

first by strata s ∈ S and then ordered by treatment assignment a ∈ A within strata. In
order to exploit this observation, it is useful to introduce some further notation. De-
fine N(s) ≡∑n

i=1 I{Si < s}, Na(s) ≡∑n
i=1 I{Ai < a�Si = s}, F(s) ≡ P{Si < s}, and Fa(s) ≡

P{Ai < a�Si = s} for all (a� s) ∈ A×S . Furthermore, independently for each (a� s) ∈ A×S
and independently of (A(n)� S(n)), let {Ỹ s

i (a) : 1 ≤ i ≤ n} be i.i.d. with marginal distribu-
tion equal to the distribution of Ỹi(a)|Si = s. With this notation, define

L̃
(1)
n ≡

(
1√
n

n∑
i=1

I{Ai = a�Si = s}Ỹ s
i (a) : (a� s) ∈ A0 × S

)

=
(

1√
n

n
N(s)+Na+1(s)

n∑
i=nN(s)+Na(s)

n +1

Ỹ s
i (a) : (a� s) ∈ A0 × S

)
�
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By construction, {L̃(1)
n |S(n)�A(n)} d= {L(1)

n |S(n)�A(n)} and so L̃
(1)
n

d= L
(1)
n . Since L

(2)
n is only

a function of S(n), we further have that {L(1)
n �L(2)

n } d= {L̃(1)
n �L(2)

n }. Next, define

L
∗(1)
n ≡

(
1√
n

�n(F(s)+Fa+1(s))�∑
i=�n(F(s)+Fa(s))�+1

Ỹ s
i (a) : (a� s) ∈ A0 × S

)
�

Note that L∗(1)
n ⊥⊥ L

(2)
n . Using similar partial sum arguments as those in Bugni, Canay,

and Shaikh (2018, Lemma B.1), it follows that

L∗(1)
n�a (s) = 1√

n

�n(F(s)+Fa+1(s))�∑
i=�n(F(s)+Fa(s))�+1

Ỹ s
i (a)

d→N
(
0�πa(s)p(s)σ

2
Ỹ (a)

(s)
)
�

for all (a� s) ∈ A0 × S , where we used that Fa+1(s) − Fa(s) = πa(s)p(s). By the indepen-

dence of the components, it follows that L
∗(1)
n

d→ N(0�Σ1). We conclude the proof by
arguing that

L̃(1)
n�a(s)−L∗(1)

n�a (s)
P→ 0�

for all (a� s) ∈ A0 × S , where

L̃(1)
n�a(s) = 1√

n

n
N(s)+Na+1(s)

n∑
i=nN(s)+Na(s)

n +1

Ỹ s
i (a)�

This in turn follows from (
N(s)

n
�
Na(s)

n

)
P→ (

F(s)�Fa(s)
)

for all (a� s) ∈ A0 ×S and again invoking similar arguments to those in Bugni, Canay, and
Shaikh (2018, Lemma B.1).

Lemma C.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mecha-
nism satisfies Assumption 4.1. Define

L
(1)
n ≡

(
1√
n

n∑
i=1

I{Ai = a�Si = s}Ỹi(a) : (a� s) ∈ A0 × S
)
� (39)

L
(2)
n ≡

(√
n

(
n(s)

n
−p(s)

)
: s ∈ S

)
� (40)

L
(3)
n ≡

(√
n

(
na(s)

n(s)
−πa

)
: (a� s) ∈ A0 × S

)
� (41)

and Ln = (L
(1)′
n �L

(2)′
n �L

(3)′
n )′. It follows that

Ln
d→ N

⎛
⎜⎝
⎛
⎜⎝0

0
0

⎞
⎟⎠ �

⎛
⎜⎝Σ1 0 0

0 Σ2 0
0 0 Σ3

⎞
⎟⎠
⎞
⎟⎠ �
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where

Σ1 = diag
(
πa(s)p(s)σ

2
Ỹ (a)

(s) : (a� s) ∈ A0 × S
)
�

Σ2 = diag
(
p(s) : s ∈ S

)− (p(s) : s ∈ S
)(
p(s) : s ∈ S

)′
�

Σ3 = diag
(
ΣD(s)/p(s) : s ∈ S

)
�

Proof. To prove our result, we first show that

{
L
(1)
n �L(2)

n �L(3)
n

} d= {L∗(1)
n �L(2)

n �L(3)
n

}+ oP(1)�

for a random vector L
∗(1)
n satisfying L

∗(1)
n ⊥⊥ (L(2)

n �L(3)
n ) and L

∗(1)
n

d→ N(0�Σ1). We then

combine this result with the fact that L
(2)
n

d→ N(0�Σ2), which follows from W (n) con-

sisting of n i.i.d. observations and the CLT, and the fact that conditional on S(n), L(3)
n

d→
N(0�Σ3), which follows from Assumption 4.1. The proof of (C) follows from similar ar-
guments to those used in the proof of Lemma C.1 and so we omit them here.

Lemma C.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mecha-
nism satisfies Assumption 2.2. Let

C
′
nCn =

⎡
⎢⎢⎣

diag
(
n(s) : s ∈ S

) ∑
s∈S

Js ⊗ (
na(s) : a ∈ A

)′
∑
s∈S

Js ⊗ (
na(s) : a ∈ A

)
diag

(
na(s) : (a� s) ∈ A× S

)
⎤
⎥⎥⎦ � (42)

and

C
′
nYn =

⎡
⎢⎢⎢⎢⎣

(∑
a∈A0

n∑
i=1

I{Ai = a�Si = s}Ỹi(a)+
∑
a∈A0

na(s)
(
E
[
ma(Z)|S = s

]+μa

) : s ∈ S

)
(

n∑
i=1

I{Ai = a�Si = s}Ỹi(a)+ na(s)
(
E
[
ma(Z)|S = s

]+μa

) : (a� s) ∈ A× S

)
⎤
⎥⎥⎥⎥⎦ � (43)

where Yn ≡ (Yi : 1 ≤ i ≤ n). It follows that

1
n
C

′
nCn

P→ ΣC ≡

⎡
⎢⎢⎣

diag
(
p(s) : s ∈ S

) ∑
s∈S

Js ⊗ (
πa(s)p(s) : a ∈ A

)′
∑
s∈S

Js ⊗ (
πa(s)p(s) : a ∈ A

)
diag

(
πa(s)p(s) : (a� s) ∈ A× S

)
⎤
⎥⎥⎦ �

and

1
n
C

′
nYn

P→
⎡
⎢⎣
(
p(s)

∑
a∈A0

πa(s)
(
E
[
ma(Z)|S = s

]+μa
) : s ∈ S

)
(
p(s)πa(s)

(
E
[
ma(Z)|S = s

]+μa
) : (a� s) ∈ A× S

)
⎤
⎥⎦ �
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In addition,

Σ−1
C =

⎡
⎢⎢⎣

diag
(

1
π0(s)p(s)

: s ∈ S
) ∑

s∈S
Js ⊗

( −1
π0(s)p(s)

: a ∈A
)′

∑
s∈S

Js ⊗
( −1
π0(s)p(s)

: a ∈A
) ∑

s∈S
Js ⊗

(
diag

(
1

πa(s)p(s)
: a ∈A

)
+ 1

π0(s)p(s)
ι|A|ι′|A|

)
⎤
⎥⎥⎦ �

Proof. The first result follows immediately from Assumption 2.2(b) and the fact that
n(s)
n

P→ p(s) and na(s)
n = na(s)

n(s)
n(s)
n

P→ πa(s)p(s) for all (a� s) ∈ A× S. For the second result,
consider the following argument:

1
n
C

′
nYn = 1

n

n∑
i=1

[ (
I{Si = s}Yi : s ∈ S

)(
I{Ai = a�Si = s}Yi : (a� s) ∈ A× S

)
]

= 1
n

n∑
i=1

⎡
⎢⎣
(∑
a∈A0

I{Ai = a�Si = s}[Ỹi(a)+E
[
ma(Z)|Si = s

]+μa
] : s ∈ S

)
(
I{Ai = a�Si = s}[Ỹi(a)+E

[
ma(Z)|Si = s

]+μa
] : (a� s) ∈ A× S

)
⎤
⎥⎦

=
⎡
⎢⎣
(
p(s)

∑
a∈A0

πa(s)
(
E
[
ma(Z)|S = s

]+μa
) : s ∈ S

)
(
p(s)πa(s)

(
E
[
ma(Z)|S = s

]+μa
) : (a� s) ∈ A× S

)
⎤
⎥⎦+ oP(1)�

where we used 1
n

∑n
i=1 I{Ai = a�Si = s} = na(s)

n

P→ πa(s)p(s), and 1
n

∑n
i=1 I{Ai = a�Si =

s}Ỹi(a)
P→ 0 for all (a� s) ∈ A0 × S . Finally, the last result follows from simple manipula-

tions that we omit.

Lemma C.4. Suppose Q satisfies Assumption 2.1 and the treatment assignment mecha-
nism satisfies Assumption 2.2. Let Wi = f ((Yi(a) : a ∈ A)� Si) for some function f (·) satisfy
E[|Wi|]<∞. Then, for all a ∈ A0,

1
n

n∑
i=1

WiI{Ai = a} P→
∑
s∈S

p(s)πa(s)E[Wi]� (44)

Proof. Fix a ∈ A0. By arguing as in the proof of Lemma C.1, note that

1
n

n∑
i=1

WiI{Ai = a} d=
∑
s∈S

1
n

na(s)∑
i=1

W s
i �

where, independently for each s ∈ S and independently of (A(n)� S(n)), {W s
i : 1 ≤ i ≤ n}

are i.i.d. with marginal distribution equal to the distribution of Wi|Si = s. In order to
establish the desired result, it suffices to show that

1
n

na(s)∑
i=1

W s
i

P→ p(s)πa(s)E
[
W s

i

]
� (45)
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From Assumption 2.2(b), na(s)
n

P→ p(s)πa(s), so (45) follows from

1
na(s)

na(s)∑
i=1

W s
i

P→E
[
W s

i

]
� (46)

To establish (46), use the almost sure representation theorem to construct ña(s)
n such

that ña(s)
n

d= na(s)
n and ña(s)

n → p(s)πa(s) a.s. Using the independence of (A(n)� S(n)) and
{W s

i : 1 ≤ i ≤ n}, we see that for any ε > 0,

P

{∣∣∣∣∣ 1
na(s)

na(s)∑
i=1

W s
i −E

[
W s

i

]∣∣∣∣∣> ε

}
= P

{∣∣∣∣∣ 1

n
na(s)

n

nna(s)
n∑

i=1

W s
i −E

[
W s

i

]∣∣∣∣∣> ε

}

= P

{∣∣∣∣∣ 1

n
ña(s)

n

n ña(s)
n∑

i=1

W s
i −E

[
W s

i

]∣∣∣∣∣> ε

}

= E

[
P

{∣∣∣∣∣ 1

n
ña(s)

n

n ña(s)
n∑

i=1

W s
i −E

[
W s

i

]∣∣∣∣∣> ε
∣∣∣ ña(s)

n

}]

→ 0�

where the convergence follows from the dominated convergence theorem and

P

{∣∣∣∣∣ 1

n
ña(s)

n

n ña(s)
n∑

i=1

W s
i −E

[
W s

i

]∣∣∣∣∣> ε
∣∣∣ ña(s)

n

}
→ 0 a.s. (47)

To see that the convergence (47) holds, note that the weak law of large numbers implies
that

1
nk

nk∑
i=1

W s
i

P→E
[
W s

i

]
(48)

for any subsequence nk → ∞ as k → ∞. Since n ña(s)
n → ∞ a.s., (47) follows from the

independence of ña(s)
n and {W s

i : 1 ≤ i ≤ n} and (48).

Lemma C.5. Suppose Q satisfies Assumption 2.1 and the treatment assignment mech-
anism satisfies Assumption 2.2. Let ûi = Yi − Ciγ̂n and γ̂n = ((δ̂n(s) : s ∈ S)′� (β̂n�a(s) :
(a� s) ∈ A× S)′)′, where Ci is as in (B.1), be the least squares residuals associated with the
regression in (7). Then

1
n

n∑
i=1

û2
i

P→
∑

(a�s)∈A0×S
p(s)πa(s)σ

2
Ỹ (a)

(s)�
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1
n

n∑
i=1

û2
i I{Ai = a�Si = s} P→ p(s)πa(s)σ

2
Ỹ (a)

(s)�

1
n

n∑
i=1

û2
i I{Si = s} P→

∑
a∈A0

p(s)πa(s)σ
2
Ỹ (a)

(s)�

1
n

n∑
i=1

û2
i I{Ai = a} P→

∑
s∈S

p(s)πa(s)σ
2
Ỹ (a)

(s)�

Proof. First, note that, by definition of Ỹi(a), we can write

Yi =
∑

(a�s)∈A0×S

I{Ai = a�Si = s}[Ỹi(a)+E
[
ma(Z)|S = s

]+μa
]
�

In addition, for γ = ((δ(s) : s ∈ S)′� (βa(s) : (a� s) ∈ A× S)′)′,

Ciγ =
∑
s∈S

I{Si = s}(E[m0(Z)|S = s
]+μ0

)

+
∑

(a�s)∈A×S
I{Ai = a�Si = s}[E[ma(Z)−m0(Z)|S = s

]+ θa
]
�

We can therefore write the error term ui as

ui = Yi −Ciγ =
∑

(a�s)∈A0×S
I{Ai = a�Si = s}Ỹi(a)�

and its square as

u2
i =

∑
(a�s)∈A0×S

I{Ai = a�Si = s}Ỹ 2
i (a)�

By arguments similar to those in Bugni, Canay, and Shaikh (2018, Lemma B.8), it is
enough to show the results with u2

i in place of û2
i . Since E[u2

i ] = p(s)πa(s)σ
2
Ỹ (a)

(s), the

results follow immediately by invoking Lemma C.4 repeatedly. We therefore omit the
arguments here.

Lemma C.6. Suppose Q satisfies Assumption 2.1 and the treatment assignment mech-
anism satisfies Assumption 4.1. Let V̂∗

ho be the homoskedasticity-only estimator of the
asymptotic variance for the regression in (18), defined as

V̂
∗
ho =

(
1
n

n∑
i=1

û2
i

)
R

∗
(

1
n
C

∗′
n C

∗
n

)−1
R

∗′� (49)

where {ûi : 1 ≤ i ≤ n} are the least squares residuals, C∗
n is the matrix with ith row given by

C∗
i = [(I{Si = s} : s ∈ S

)′
�
(
I{Ai = a} : a ∈ A

)′]
�
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and R∗ is a matrix with |A| rows and |S| + |A| columns defined as R∗ = [O� I|A|], where O

and I|A| are defined in Table 8. Then

V̂
∗
ho

P→
( ∑
(a�s)∈A0×S

p(s)πaσ
2
Ỹ (a)

(s)+
∑
s∈S

p(s)ς2
H(s)

)[
1
π0

ι|A|ι′|A| + diag
(

1
πa

: a ∈ A
)]

�

where

ς2
H(s) =

∑
a∈A0

πa
(
E
[
ma(Zi)|S = s

])2 −
(∑
a∈A0

πaE
[
ma(Zi)|S = s

])2
�

Proof. The proof is similar to that of Theorem 3.2 and, therefore, omitted.

Lemma C.7. Suppose Q satisfies Assumption 2.1 and the treatment assignment mecha-
nism satisfies Assumption 4.1. Let V̂∗

he be the heteroskedasticity-consistent estimator of
the asymptotic variance for the regression in (18), defined as

V̂
∗
he =R

∗
[(

C
∗′
n C

∗
n

n

)−1(C∗′
n diag

({
û2
i

}n
i=1

)
C

∗
n

n

)(
C

∗′
n C

∗
n

n

)−1]
R

∗′� (50)

where {ûi : 1 ≤ i ≤ n} are the ordinary least squares residuals, and C∗
n and R∗ are defined

as in Lemma C.6. Then

V̂
∗
he

P→ V
∗
1 +V

∗
2�

where

V
∗
1 = diag

(∑
s∈S

p(s)

πa

[
σ2
Ỹ (a)

(s)+
(
E
[
ma(Z)|S = s

]− ∑
ã∈A0

πãE
[
mã(Z)|S = s

])2]
: a ∈ A

)
�

V
∗
2 = ι|A|ι′|A|

∑
s∈S

p(s)

π0

[
σ2
Ỹ (0)

(s)+
(
E
[
m0(Z)|S = s

]− ∑
ã∈A0

πãE
[
mã(Z)|S = s

])2]
�

Proof. The proof is similar to that of Theorem 3.2 and, therefore, omitted.

Appendix D: Results on local power

Let {Q∗
n : n ≥ 1} be a sequence of local alternatives to the null hypothesis in (4) that sat-

isfies
√
n
(
Ψθ
(
Q∗

n

)− c
)→ λ (51)

as n → ∞, for λ and c being r-dimensional column vectors and Ψ being a (r × |A|)-
dimensional matrix such that rank(Ψ) = r. Consider a test of the form

φn
(
X(n)

)= I
{
Tn
(
X(n)

)
>χ2

r�1−α

}
�

where

Tn
(
X(n)

)= n(Ψθ̂n − c)′
(
Ψ V̂nΨ

′)−1
(Ψ θ̂n − c)�
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θ̂n is an estimator of θ(Q) satisfying

√
n
(
θ̂n − θ

(
Q∗

n

)) d→N(0�V) under Q∗
n (52)

for some asymptotic variance V, V̂n is a matrix intended to studentize the test statistic
that satisfies

V̂n
P→ Vstud under Q∗

n (53)

for some Vstud, and χ2
r�1−α is the 1 −α quantile of a χ2 random variable with r degrees of

freedom. The next theorem summarizes our main result.

Theorem D.1. Let {Q∗
n : n ≥ 1} be the sequence of local alternatives satisfying (51), θ̂n

be an estimator satisfying (52), and V̂n be a random matrix satisfying (53). Assume
that V and Vstud are positive definite, that Vstud − V is positive semidefinite, and that
rank(Ψ) = r. Then

lim
n→∞E

[
φn
(
X(n)

)]
= P

{
(ξ + λ̃)′

(
ΨVΨ ′)1/2(

ΨVstudΨ
′)−1(

ΨVΨ ′)1/2
(ξ + λ̃) > χ2

r�1−α

}
� (54)

under Q∗
n, where ξ ∼ N(0� Ir) and λ̃ = (ΨVΨ ′)−1/2λ. In addition, the following three state-

ments follow under Q∗
n:

(a) Under the assumptions above,

lim sup
n→∞

E
[
φn
(
X(n)

)]≤ P
{
(ξ + λ̃)′(ξ + λ̃) > χ2

r�1−α

}
�

(b) If V=Vstud, then

lim
n→∞E

[
φn
(
X(n)

)]= P
{
(ξ + λ̃)′(ξ + λ̃) > χ2

r�1−α

}≥ α�

where the inequality is strict if and only if λ 
= 0.

(c) If φ1
n(X

(n)) and φ2
n(X

(n)) are two tests such that φ1
n(X

(n)) is based on an estimator
with V1 =V1

stud and φ2
n(X

(n)) is based on an estimator with V2 = V2
stud, then

lim
n→∞E

[
φ1
n

(
X(n)

)]≥ lim
n→∞E

[
φ2
n

(
X(n)

)]
�

provided V2 −V1 is positive semidefinite. In addition, the inequality becomes strict if and
only if λ 
= 0 and V2 −V1 is positive definite.

Proof. Notice that

√
n(Ψθ̂n − c) = √

n
(
Ψθ̂n −Ψθ

(
Q∗

n

))+ √
n
(
Ψθ
(
Q∗

n

)− c
) d→N

(
λ�ΨVΨ ′) under Q∗

n�
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By Slutsky’s theorem,

(
Ψ V̂nΨ

′)−1/2√
n(Ψθ̂n − c)

d→ N
((
ΨVstudΨ

′)−1/2
λ�
(
ΨVstudΨ

′)−1/2(
ΨVΨ ′)(ΨVstudΨ

′)−1/2)
∼ (ΨVstudΨ

′)−1/2(
ΨVΨ ′)1/2

(ξ + λ̃)�

under Q∗
n, with ξ ∼ N(0� Ir) and λ̃= (ΨVΨ ′)−1/2λ. From here, we conclude that

Tn
(
X(n)

) d→ (ξ + λ̃)′
(
ΨVΨ ′)1/2(

ΨVstudΨ
′)−1(

ΨVΨ ′)1/2
(ξ + λ̃)�

and (54) follows.
Part (a). This follows immediately from Lemma D.1.
Part (b). Note that

P
{
(ξ + λ̃)′(ξ + λ̃) > χ2

r�1−α

}= Λr
2

(√
μ�
√
χ2
r�1−α

)
� (55)

where Λm(a�b) is the Marcum-Q-function and μ ≡ λ̃′λ̃ = λ′(ΨVΨ ′)−1λ ≥ 0. By the fact
that Λm(a�b) is increasing in a (see Temme (2014, p. 575) and Sun and Baricz (2008,

Theorem 3.1)), Λr
2
(
√
μ�
√
χ2
r�1−α) ≥ Λr

2
(0�
√
χ2
r�1−α) = α, with strict inequality if and only

if μ > 0. Since V is positive definite and Ψ is full rank, ΨVΨ ′ is positive definite and,
thus, nonsingular. Then, μ> 0 if and only if λ 
= 0.

Part (c). We only show the strict inequality, as the weak inequality follows from weak-
ening all the inequalities. For d = 1�2, since Vd is positive definite and Ψ is full rank,
ΨVdΨ ′ is positive definite, and thus, nonsingular. Since V2 −V1 is positive definite and
Ψ is full rank, ΨV2Ψ ′ − ΨV1Ψ ′ is positive definite and so (ΨV2Ψ ′)−1 − (ΨV1Ψ ′)−1 is
negative definite. By this and the fact that λ 
= 0, we conclude that

μ2 −μ1 = λ′(ΨV
2Ψ ′)−1

λ− λ′(ΨV
1Ψ ′)−1

λ = λ′((ΨV
2Ψ ′)−1 − (ΨV

1Ψ ′)−1)
λ < 0�

By (55) and the fact that Λm(a�b) is increasing in a, the result follows.

Lemma D.1. Suppose that V − Vstud ∈ R|A|×|A| is negative semidefinite, Vstud is non-
singular, and rank(Ψ) = r. Then, (ΨVstudΨ

′)−1/2(ΨVΨ ′)(ΨVstudΨ
′)−1/2 − Ir is negative

semidefinite.

Proof. Since Ψ is full rank and Vstud is nonsingular, (ΨVstudΨ
′)1/2 is well-defined and

nonsingular. Let a be an arbitrary r-dimensional column vector. We wish to show that

a′((ΨVstudΨ
′)−1/2(

ΨVΨ ′)(ΨVstudΨ
′)−1/2 − Ir

)
a ≤ 0� (56)

Let b= (ΨVstudΨ
′)−1/2a and note that (56) is equivalent to

b′(ΨVstudΨ
′)1/2((

ΨVstudΨ
′)−1/2(

ΨVΨ ′)(ΨVstudΨ
′)−1/2 − Ir

)(
ΨVstudΨ

′)1/2
b ≤ 0

which, in turn, is equivalent to (Ψ ′b)′(V − Vstud)(Ψ
′b) ≤ 0. This last inequality holds

because V−Vstud is negative semidefinite.
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