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There is an innate human tendency, one might call it the “league table mentality,”
to construct rankings. Schools, hospitals, sports teams, movies, and myriad other ob-
jects are ranked even though their inherent multi-dimensionality would suggest that—
at best—only partial orderings were possible. We consider a large class of elementary
ranking problems in which we observe noisy, scalar measurements of merit for n objects
of potentially heterogeneous precision and are asked to select a group of the objects
that are “most meritorious.” The problem is naturally formulated in the compound de-
cision framework of Robbins’s (1956) empirical Bayes theory, but it also exhibits close
connections to the recent literature on multiple testing. The nonparametric maximum
likelihood estimator for mixture models (Kiefer and Wolfowitz (1956)) is employed to
construct optimal ranking and selection rules. Performance of the rules is evaluated in
simulations and an application to ranking U.S kidney dialysis centers.
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APPENDIX A: PROOFS

PROOF OF LEMMA 3.1: We can write
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The last inequality holds since ∇y logϕ(y|θ�σ2) is increasing in θ for each fixed σ2, by
the Gaussian assumption and the fact that covariance of monotone functions of θ is non-
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negative (see Schmidt (2014)), assuming the existence of Eθ|Y [∇y logϕ(Y|θ�σ2)|Y ], which
we assume. Nesting follows from the monotonicity of the vα(y) criterion: monotonicity of
vα(y) implies that there exists tα such that 1{vα(y) ≥ λα/(1 + λα)} = 1{y ≥ tα}; hence, if
α1 > α2 and P(y ≥ tα1 ) = α1 and P(y ≥ tα2 ) = α2, then it must be that tα1 ≤ tα2 , implying
nestedness. Q.E.D.

PROOF OF LEMMA 3.2: Denote the three decision criteria, v1(y) = E(θ|Y = y), v2(y) =
P(θ ≥ G−1(1 − α)|Y = y), and v3(y) = E(θ1(θ ≥ G−1(1 − α))|Y = y). Assuming that
E[θ|Y ] <∞, Eθ|Y [∇y logϕ(y|θ�σ2)|Y ] < ∞, and Eθ|Y [θ∇y logϕ(y|θ�σ2)|Y ] <∞, the cal-
culation leading to the proof of Lemma 1 shows:

∇yv1(y) = Cov
(
θ�∇y logϕ(y|θ)|Y = y

)
�

∇yv2(y) = Cov
(
1
(
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)
�

∇yv3(y) = Cov
(
θ1

(
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)
�∇y logϕ(y|θ)|Y = y

)
�

Thus, the monotonicity of ∇y logϕ(y|θ�σ2) implies they all yield identical rankings.
Q.E.D.

PROOF OF PROPOSITION 3.3: The Bayes rule for the non-randomized selections can be
characterized as
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The Bayes rule takes the form of thresholding on the posterior tail probability vα(y),
and since vα(y) is monotone in y as shown in Lemma 3.2, it is therefore a thresholding rule
on Y , δ∗

i = 1{yi ≥ t∗} with cutoff t∗ depending on the values of (τ∗
1� τ

∗
2�α�γ). Condition

(A.3) is equivalent to a constraint on the marginal false discovery rate, mFDR, since it
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requires
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and we can show that the left-hand-side quantity is precisely the mFDR since
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For any mixing distribution G, as t∗ increases, it becomes less likely for condition (A.3)
to bind. And as t∗ approaches −∞, the left-hand side of (A.3) approaches 1 −α− γ, and
hence we have restricted γ < 1 − α to avoid cases where the condition (A.3) never binds.
On the other hand, condition (A.4) is equivalent to

P
(
δ∗
i = 1

) − α=
∫ +∞

−∞
�̃

((
t∗ − θ

)
/σ

)
dG(θ) − α≤ 0�

As t∗ increases, it also becomes less likely that condition (A.4) binds. Therefore, we can
define

t∗1 = min
{
t : mFDR(t) − γ ≤ 0

}
�

t∗2 = min
{
t :

∫ +∞

−∞
�̃

(
(t − θ)/σ

)
dG(θ) − α≤ 0

}
�

When t∗1 < t∗2 , the feasible region for Y defined by inequality (A.4) is a strict subset of
that defined by inequality (A.3). When t∗1 > t∗2 , then the feasible region defined by in-
equality (A.3) is a strict subset of that defined by inequality (A.4). When t∗1 = t∗2 , the
feasible regions coincide. This case occurs when mFDR(t∗1 ) = γ and P(y ≥ t∗2 ) = α, so
E[vα(Y )1{vα(Y ) ≥ λ∗}] = α − αγ with vα(t∗1 ) = λ∗(α�γ). Again, the strict thresholding
enforced by the statement of the proposition can be relaxed slightly by randomizing the
selection probability of the last unit so that the active constraint is satisfied exactly. Q.E.D.

PROOF OF PROPOSITION 4.1: In the proof, we will suppress the dependence of λ∗ on
the (α�γ). The argument is very similar to the proof for Proposition 3.3, except that now
the feasible region defined by constraint (A.3) and (A.4) is a two-dimensional region for
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(yi�σi). Since the posterior tail probability vα(y�σ) is monotone in y for any fixed σ as
a result of Lemma 3.2, the optimal rule can be reformulated as a thresholding rule on Y
again, δ∗

i = 1{yi > tα(λ∗�σi)}, except now the threshold value also depends on σi.
Now consider the constraint (A.3) and (A.4). Condition (A.3) is equivalent to the con-

dition that
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For any marginal distributions G and H of (θ�σ) and for a fixed pair of (α�γ), as λ∗

increases, tα(λ∗�σ) also increases for any σ > 0 and therefore it is less likely for condition
(A.3) to bind. On the other hand, condition (A.4) is equivalent to

P
(
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) − α=
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So as λ∗ increases, it is also less likely for condition (A.4) to bind. Thus, when λ∗
1 < λ∗

2, the
feasible region on (Y�σ) defined by inequality constraint (A.4) is a strict subset of that
defined by inequality (A.3). When λ∗

1 > λ∗
2, then the feasible region defined by inequality

(A.3) is a strict subset of that defined by inequality (A.4). When λ∗
1 = λ∗

2, the feasible
regions coincide; this case occurs when

E
[
vα(Y�σ)1

{
vα(Y�σ) ≥ λ∗}] = α− αγ�

where the expectation is taken with respect to the joint distribution of (Y�σ).
Finally, regarding the existence of λ∗, note that existence of a solution for λ∗

2 for any
α ∈ (0�1) follows from the fact that for any fixed α, f2(α�λ) = P(vα(y�σ) > λ) − α is a
decreasing function in λ and λ∗

2(α) is defined as the zero-crossing point of f2(α�λ). Note
that f2(α�0) = 1 − α and f2(α�1) = −α. Therefore, for any α ∈ (0�1), we can always find
a λ∗

2(α) ∈ (0�1) such that f2(α�λ∗
2(α)) = 0. Now consider f1(α�γ�λ) = E[(1 − vα(y�σ) −

γ)1{vα(y�σ) > λ}]. For a fixed pair of (α�γ), λ∗
1(α�γ) is defined as the zero-crossing

point of f1(α�γ�λ). Note that f1(α�γ�λ) decreases first and then increases in λ with its
minimum achieved at λ = 1 − γ. We also know that f1(α�γ�0) = 1 − γ − E[vα(y�σ)] =
1−γ−α and f1(α�γ�1) = 0. Hence, as long as γ < 1−α, the zero-crossing λ∗

1(α�γ) exists.
The condition γ < 1−α is to rule out cases where the FDR constraint never binds. Q.E.D.

PROOF OF LEMMA 4.2: Note that for any cutoff value λ, the mFDR can be expressed
as

mFDR(α�λ) = E
[(
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)
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}]
/P
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]
�

Thus, mFDR depends both on the cutoff value λ and on α since vα is a function of α, and
consequently its density function is also indexed by α.
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First, we will show that ∇λ mFDR(α�λ) ≤ 0 for all α ∈ (0�1). Differentiating with re-
spect to λ gives
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Next, to establish that ∇α mFDR(α�λ) ≤ 0, we differentiate with respect to α, to obtain
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where the last inequality holds because ∇α log fv(v;α) is non-decreasing in v.
Now suppose we have the cutoff value λ∗

1(α2�γ) such that

E
[(
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)
1
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}]
/P(vα2 (yi�σi) > λ∗

1(α2�γ)] = γ�
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If we maintain the same cutoff value for vα1 (yi�σi) with α1 >α2, given the second property
of mFDR, we know

E
[(

1 − vα1 (yi�σi)
)
1
{
vα1 (yi�σi) ≥ λ∗

1(α2�γ)
}]
/P

(
vα1 (yi�σi) ≥ λ∗

1(α2�γ)
) ≤ γ�

If equality holds, then, by definition, we have λ∗
1(α2�γ) = λ∗

1(α1�γ); if strict inequality
holds, then by the first property of mFDR, in order to increase mFDR level to be equal
to γ, we must have λ∗

1(α1�γ) < λ∗
1(α2�γ). Q.E.D.

PROOF OF COROLLARY 4.3: For any α1 > α2, we have vα1 (y�σ) ≥ vα2 (y�σ) for all pair
of (y�σ) ∈ R×R+. When the condition in Lemma 4.2 holds, then vα1 (y�σ) ≥ vα2 (y�σ) >
λ∗

1(α2�γ) ≥ λ∗
1(α1�γ), which implies 
FDR

α2�γ
⊆ 
FDR

α1�γ
. Q.E.D.

PROOF OF LEMMA 4.4: Since tα(λ∗
2(α)�σ) defines the boundary of the selection region

under the capacity constraint for a fixed level α, the condition imposes that as α increases,
for each fixed σ , the thresholding value for Y decreases, hence nestedness of the selection
region holds. Q.E.D.

PROOF OF LEMMA 4.5: Based on results in Lemma 4.2 and Lemma 4.4 and the fact
that 
α�γ = 
FDR

α�γ ∩
C
α , we have nestedness of the selection set. Q.E.D.

PROOF OF PROPOSITION C.1: The capacity constraint requires that

α= P
(
M(y�σ) ≥ C∗

2 (α)
) =

∫ ∫
1
{
M(y�σ) ≥ C∗

2 (α)
}
f (y|θ�σ) dG(θ) dH(σ)�

For any α1 > α2, it is then clear that C∗
2 (α1) ≤ C∗

2 (α2). Given the monotonity of M(y�σ)
for each fixed σ established in Lemma 3.2, the selection set based on capacity constraint
is nested. For FDR constraint, we require

γ =

∫ ∫ θα

−∞
1
{
M(y�σ) ≥ C∗

1 (α�γ)
}
f (y|θ�σ) dG(θ) dH(σ)∫ ∫

1
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M(y�σ) ≥ C∗

1 (α�γ)
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f (y|θ�σ) dG(θ) dH(σ)

� (A.7)

Fix γ; it suffices to show that if α1 > α2, then C∗
1 (α1�γ) ≤ C∗

1 (α2�γ). First, solve for
C∗

1 (α2�γ) from equation (A.7). Now suppose we use this same thresholding value when
we increase capacity to α1 > α2; we evaluate the right-hand side of equation (A.7). Since
θα1 ≤ θα2 , then the numerator decreases,

∫ ∫ θα1

−∞
1
{
M(y�σ) ≥ C∗

1 (α2�γ)
}
f (y|θ�σ) dG(θ) dH(σ)

≤
∫ ∫ θα2

−∞
1
{
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1 (α2�γ)
}
f (y|θ�σ) dG(θ) dH(σ)�

while the denominator does not change. The only way to satisfy the equality (A.7) again
is to decrease the thresholding value; therefore, C∗

1 (α1�γ) ≤ C∗
1 (α2�γ). The result in the

proposition is then reached since the selection set is the intersection of the selection set
under capacity constraint and that under FDR constraint. Q.E.D.
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PROOF OF LEMMA 5.1: The logarithm of the Gamma density of Si takes the form

log�
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i
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2
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we have
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)
�
(
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]
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(
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)
�
(
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)
dG

(
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)

= E

[
1{θ ≥ θα}

(
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s

− r

σ2

)∣∣∣∣Y = y�S = s

]

−E
[
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E

[
r − 1
s

− r

σ2

∣∣∣∣Y = y�S = s

]
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[
1{θ ≥ θα}�

r

σ2

∣∣∣∣Y = y�S = s

]
�

The covariance term can take either sign since we do not restrict the distribution G, so
vα(Y�S) need not be monotone in S. On the other hand, if we fix s and differentiate with
respect to y ,

∇yvα(y� s) = E

[
1{θ ≥ θα}

[
− y − θ

σ2/T

]∣∣∣∣Y = y�S = s

]

−E
[
1{θ ≥ θα}|Y = y�S = s

]
E

[
− y − θ

σ2/T

∣∣∣∣Y = y�S = s

]

= Cov
[
1{θ ≥ θα}�

θ− y

σ2/T

∣∣∣∣Y = y�S = s

]
�

Again, the covariance term can take either sign, depending on the correlation of θ and
σ2 conditional on (Y�S). Therefore, fixing S, vα(Y�S) need not be a monotone function
of Y . Q.E.D.

PROOF OF PROPOSITION 5.2: The proof is very similar to that of Proposition 4.1. The
only difference is that we can no longer formulate the decision rule by simply thresholding
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on Y because the transformation vα(Y�S) need not be monotone in Y for fixed values of
S as shown in Lemma 5.1; hence, λ∗

1(α�γ) and λ∗
2(α) must now be defined directly through

the random variable vα. The first constraint states that

E

[
n∑

i=1

{
(
1 − vα(yi� si)

)
δ∗
i

]/
E

[
n∑

i=1

δ∗
i

]
≤ γ

with δ∗
i = 1{vα(yi� si) ≥ λ∗}. For each fixed α, let the density function for vα(Y�S) be de-

noted as fv(·;α); then the constraints can be formulated as

∫ 1

λ∗
(1 − v)fv(v;α) dv/

∫ 1

λ∗
fv(v;α) dv�

which is non-increasing in λ∗. Hence, the constraint becomes less likely to bind as λ∗

increases. On the other hand, the second constraint states that

P
(
δ∗
i = 1

) − α=
∫ 1

λ∗
fv(v;α) dv− α�

For each fixed α ∈ (0�1), this constraint also becomes less likely to bind as λ∗ increases.
Q.E.D.

PROOF OF THEOREM 6.1: To prove Theorem 6.1, we first introduce some additional
notation and prove several lemmas. Let

Hn�0(t) = 1 −Hn(t) = 1
n

n∑
i=1

1{vα�i ≥ t}�

Hn�1(t) = 1
n

n∑
i=1

(1 − vα�i)1{vα�i ≥ t}�

Qn(t) = Hn�1(t)/Hn�0(t)�

Vn(t) = 1
n

n∑
i=1

1{vα�i ≥ t}1{θi ≤ θα}�

H0(t) = 1 −H(t) = P(vα�i ≥ t)�

H1(t) = E
[
(1 − vα�i)1{vα�i ≥ t}

]
�

Q(t) = H1(t)/H0(t)�

LEMMA A.1: Under Assumption 1, as n → ∞,

sup
t∈[0�1]

∣∣Hn�0(t) −H0(t)
∣∣ p→ 0�

sup
t∈[0�1]

∣∣Hn�1(t) −H1(t)
∣∣ p→ 0�
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PROOF OF LEMMA A.1: Under Assumption 1 and the fact that vα�i ∈ [0�1], the weak
law of large numbers implies that we have, for any t ∈ [0�1], as n → ∞,

Hn�0(t)
p→ H0(t)�

Hn�1(t)
p→ H1(t)�

By the Glivenko–Cantalli theorem, the first result is immediate. To prove the second re-
sult, it suffices to show that for any ε > 0, as n → ∞,

P
(

sup
t∈[0�1]

∣∣Hn�1(t) −H1(t)
∣∣> ε

) → 0�

It is clear that since vα�i has a continuous distribution, H1(t) is a monotonically decreasing
and bounded function in t with H1(0) = 1 − α and H1(1) = 0. It is also clear that the
function Hn�1(t) is monotonically decreasing in t, so we can find mε < ∞ points such that
0 = t0 < t1 < · · ·< tmε = 1, and for any j ∈{1�2� � � � �mε}, we have H1(xj)−H1(xj−1) ≤ ε/2.
For any t ∈ [0�1], there exists a j such that xj−1 ≤ t ≤ xj and

Hn�1(t) −H1(t) ≤Hn�1(tj−1) −H1(tj)

= (
Hn�1(tj−1) −H1(tj−1)

) + (
H1(tj−1) −H1(tj)

)
≤ ∣∣Hn�1(xj−1) −H1(xj−1)

∣∣ + ε/2 ≤ max
j

∣∣Hn�1(tj−1) −H1(tj−1)
∣∣ + ε/2�

Likewise, we can show that Hn�1(t) −H1(t) ≥ −maxj|Hn�1(tj) −H1(tj)|− ε/2; hence,

sup
t∈[0�1]

∣∣Hn�1(t) −H1(t)
∣∣ ≤ max

j

∣∣Hn�1(tj) −H1(tj)
∣∣ + ε/2�

Since mε is finite, then for any δ > 0, there exists N such that for all n ≥N ,

P
(
max

j

∣∣Hn�1(tj) −H1(tj)
∣∣ ≥ ε/2

) ≤ δ�

which then implies that

P
(

sup
t∈[0�1]

∣∣Hn�1(t) −H1(t)
∣∣ ≥ ε

)

≤ P

(
ε

2
+ max

j

∣∣Hn�1(tj) −H1(tj)
∣∣ ≥ ε

)

= P
(
max

j

∣∣Hn�1(tj) −H1(tj)
∣∣ ≥ ε/2

) → 0� Q.E.D.

LEMMA A.2: Under Assumption 1 and α< 1 − γ, Q(1 − γ) < γ.

PROOF OF LEMMA A.2: Define Q̄(t) = E[(1 − vα�i − γ)1{vα�i ≥ t}]; then Q(t) = γ im-
plies Q̄(t) = 0. Since Q(t) is monotonically decreasing in t as shown in the proof of
Lemma 4.2, it suffices to prove that Q̄(1 − γ) < 0. To this end, note that ∇tQ̄(t) < 0 for
t < 1−γ and ∇tQ̄(t) > 0 for t > 1−γ; hence, Q̄(t) obtains its minimun value at t = 1−γ.
Note that Q̄(0) = 1 − γ − α and Q̄(1) = 0; thus, Q̄(1 − γ) < 0. Q.E.D.
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Now we are ready to prove Theorem 6.1. We prove the first statement, as the second
statement can be shown with a similar argument. First we show that supt≤1−γ|Qn(t) −
Q(t)|

p→ 0, since

∣∣Qn(t) −Q(t)
∣∣ =

∣∣∣∣H0(t)Hn�1(t) −H1(t)Hn�0(t)
Hn�0(t)H0(t)

∣∣∣∣
=

∣∣∣∣H0(t)
(
Hn�1(t) −H1(t)

) −H1(t)
(
Hn�0(t) −H0(t)

)
Hn�0(t)H0(t)

∣∣∣∣
≤

H0(0) sup
t

∣∣Hn�1(t) −H1(t)
∣∣ +H1(0) sup

t

∣∣Hn�0(t) −H0(t)
∣∣

H0(1 − γ)
(
H0(1 − γ) − sup

t

∣∣Hn�0(t) −H0(t)
∣∣) p→ 0

uniformly for any t ≤ 1 −γ. The last inequality holds because mint≤1−γ H0(t) = H0(1 −γ)
by monotonicity of H0(t). With a similar argument, we can also show that supt≤1−γ| Vn(t)

Hn�0(t) −
Q(t)|

p→ 0. Using this result and the fact that Q(1 − γ) < γ by Lemma A.2, we have
P(|Qn(1 − γ) − Q(1 − γ)|< γ−Q(1−γ)

2 ) → 1 and therefore, P(Qn(1 − γ) < γ) → 1 and
P(λ2n ≤ 1 − γ) → 1 by the definition of λ2n. Since λn ≤ λ2n by definition, we also have
P(λn ≤ 1 − γ) → 1. On the other hand,

Qn(λn) − Vn(λn)
Hn�0(λn)

≥ inf
t≤1−γ

(
Qn(t) −Q(t) +Q(t) − Vn(t)/Hn�0(t)

) = op(1)�

Since Qn(λn) ≤Qn(λ2n) ≤ γ, it follows that

Vn(λn)
Hn�0(λn) ∨ 1

≤ Vn(λn)
Hn�0(λn)

≤ γ + op(1)�

Since Vn(λn)
Hn�0(λn)∨1 is upper bounded by 1, by Fatou’s lemma, we have

lim sup
n→∞

E

[
Vn(λn)

Hn�0(λn) ∨ 1

]
≤ γ� Q.E.D.

LEMMA A.3: Under Assumptions 1 and 2, as n → ∞,

θ̂α → θα a.s.

PROOF OF LEMMA A.3: See Lemma 21.2 in van der Vaart (2000). Q.E.D.

LEMMA A.4: Under Assumption 1 and 2, as n → ∞,

sup
i

|v̂α�i − vα�i| → 0 a.s.

PROOF OF LEMMA A.4: Let

v̂α�i =

∫ +∞

θ̂α

f (Di|θ) dĜn(θ)∫ +∞

−∞
f (Di|θ) dĜn(θ)

�
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where we denote Di as data with a density function f (Di|θ). When variances are known,
then Di ={yi�σi} and f (Di|θ) = 1

σi
ϕ((yi − θ)/σi), and when variances are unknown, then

Di ={yi� si} and f (Di|θ) = 1√
σ2/T

ϕ((yi −θ)/
√
σ2/T )�(si|r�σ2/r) with r = (T − 1)/2 with

ϕ(·) and �(·|·� ·) being the standard normal and gamma density function, respectively.
We first analyze the denominator and prove

sup
x

∣∣∣∣
∫ +∞

−∞
f (x|θ) dĜn(θ) −

∫ +∞

−∞
f (x|θ) dG(θ)

∣∣∣∣ → 0 a.s. (A.8)

Let fn(x) = ∫
f (x|θ) dĜn(θ) and f (x) = ∫

f (x|θ) dG(θ). Under Assumption 2, we have
1
2

∫
(
√
fn(x) −√

f (x))2 dμ(x) → 0 almost surely, which implies that
∫

|fn(x) −f (x)|dx →
0 almost surely. If fn(x) and f (x) are Lipschitz continuous, we proceed by contradiction.
Suppose (A.8) does not hold; then there exist ε > 0 and a sequence {xn}n≥1 such that
|fn(xn) − f (xn)|≥ ε for all n. By Lipschitz continuity of fn and f , there exists C such that∣∣fn(xn + δ) − fn(xn)

∣∣ ≤ C‖δ‖�∣∣f (xn + δ) − f (xn)
∣∣ ≤ C‖δ‖�

And therefore there exists η> 0 and for all ‖y−xn‖ ≤ η, |fn(y) −f (y)|≥ ε/2, which then
implies∫ ∣∣fn(x) − f (x)

∣∣dx≥
∫

1
{‖y − xn‖ ≤ η

}∣∣fn(y) − f (y)
∣∣dy ≥ ε

2

∫
1
{‖y − xn‖ ≤ η

}
dy�

which contradicts
∫

|fn(x) − f (x)|dx → 0 almost surely. To prove that the functions fn
and f are Lipschitz continuous, note that it suffices to prove that for each fixed param-
eter θ, |f (x|θ) − f (y|θ)|≤ Cθ‖x − y‖ and supθ Cθ < ∞. This clearly holds for the Gaus-
sian density since the Gaussian density is everywhere differentiable and has bounded first
derivative. Under Assumption 1 with T ≥ 4, the Gamma density is also everywhere dif-
ferentiable and has bounded first derivative, and thus is Lipschitz continuous.

We next analyze the numerator and show

sup
x

∣∣∣∣
∫ +∞

θ̂α

f (x|θ) dĜn(θ) −
∫ +∞

θα

f (x|θ) dG(θ)
∣∣∣∣ → 0 a.s. (A.9)

Note that ∣∣∣∣
∫ +∞

θ̂α

f (x|θ) dĜn(θ) −
∫ +∞

θα

f (x|θ) dG(θ)
∣∣∣∣

≤
∣∣∣∣
∫ +∞

θ̂α

f (x|θ) dĜn(θ) −
∫ +∞

θα

f (x|θ) dĜn(θ)
∣∣∣∣

+
∣∣∣∣
∫ +∞

θα

f (x|θ) dĜn(θ) −
∫ +∞

θα

f (x|θ) dG(θ)
∣∣∣∣�

The first term converges to 0 uniformly due to Lemma A.3. To show the second term also
converges to zero uniformly, we make use of the result that if Ĝn weakly converges to G,
which holds under Assumption 2, then supg∈BL|

∫
gdĜn − ∫

gdG|→ 0, where BL is the
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class of bounded Lipschitz continuous functions. Note that f (x|θ)1{θ ≥ θα} is bounded
and continuous except at θ = θα. So we construct a smoothed version of f (x|θ)1{θ ≥ θα},
denoted as g(x|θ), by replacing 1{θ ≥ θα} by a piecewise linear function taking value zero
for θ < θα and value 1 for θ ≥ θα + ε and taking the form −θα/ε+θ/ε for θ ∈ [θα�θα + ε];
then g ∈ BL. The result (A.9) then holds by showing that

sup
x

∣∣∣∣
∫ θα+ε

θα

f (x|θ) dĜn(θ) +
∫ θα+ε

θα

f (x|θ) dG(θ)
∣∣∣∣ → 0 a.s.�

which holds by Assumptions 1 and 2. Q.E.D.

PROOF OF THEOREM 6.2: Define analogously

Ĥn�0(t) = 1
n

n∑
i=1

1{v̂αi ≥ t}�

Ĥn�1(t) = 1
n

n∑
i=1

(1 − v̂α�i)1{v̂α�i ≥ t}�

Q̂n(t) = Ĥn�1(t)/Ĥn�0(t)�

We first show

sup
t∈[0�1]

∣∣Ĥn�0(t) −H0(t)
∣∣ p→ 0�

sup
t∈[0�1]

∣∣Ĥn�1(t) −H1(t)
∣∣ p→ 0�

We will prove the second statement now, and the first can be proved using a similar argu-
ment. To prove the second statement, it suffices to show that

sup
t∈[0�1]

∣∣Ĥn�1(t) −Hn�1(t)
∣∣ p→ 0�

To this end, note

sup
t∈[0�1]

∣∣∣∣ 1
n

∑
i

(1 − v̂α�i)1{v̂αi ≥ t}− 1
n

∑
i

(1 − vα�i)1{vα�i ≥ t}
∣∣∣∣

= sup
t∈[0�1]

∣∣∣∣1
n

∑
i

(1 − v̂α�i)1{v̂αi ≥ t}− 1
n

∑
i

(1 − vα�i)1{v̂α�i ≥ t}
∣∣∣∣

+ sup
t∈[0�1]

∣∣∣∣1
n

∑
i

(1 − vα�i)1{v̂α�i ≥ t}− 1
n

∑
i

(1 − vα�i)1{vα�i ≥ t}
∣∣∣∣

≤ 1
n

∑
i

|v̂α�i − vα�i| + sup
t∈[0�1]

1
n

∑
i

∣∣1{v̂α�i ≥ t}− 1{vα�i ≥ t}
∣∣�
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The first term is implied by the result in Lemma A.4. The second term can be written as

sup
t∈[0�1]

1
n

∑
i

∣∣1{v̂α�i ≥ t}− 1{vα�i ≥ t}
∣∣

= sup
t∈[0�1]

1
n

∑
i

[
1{v̂α�i ≥ t� vαi < t}+ 1{v̂α�i < t� vα�i ≥ t}

]

= sup
t∈[0�1]

1
n

∑
i

[
1{v̂α�i ≥ t� t − e < vαi < t}+ 1{v̂α�i < t� t ≤ vα�i < t + e}

]

+ 1
n

∑
i

[
1{v̂α�i ≥ t� vα�i < t − e}+ 1{v̂α�i < t� vα�i ≥ t + e}

]

≤ sup
t∈[0�1]

1
n

∑
i

1{t − e ≤ vα�i ≤ t + e}+ 1
ne

∑
i

|v̂α�i − vα�i|

≤ sup
t∈[0�1]

∣∣H0(t + e) −H0(t − e)
∣∣ + 2 sup

t∈[0�1]

∣∣Hn�0(t) −H0(t)
∣∣ + 1

ne

∑
i

|v̂α�i − vα�i|

for some e > 0 arbitrarily small and bounded away from zero; the right-hand side con-
verges to zero in probability by results in Lemma A.1 and the uniform continuity of
H0. Using similar arguments as in the proof of Theorem 6.1, we can establish that
supt≤1−γ|Q̂n(t) −Q(t)|

p→ 0 and supt≤1−γ| V̂n(t)
Ĥn�0(t)

−Q(t)|
p→ 0 with Q̂n(t) = Ĥn�1(t)/Ĥn�0(t)

and V̂n(t) = 1
n

∑n

i=1 1{v̂α�i ≥ t}1{θi ≤ θα} and consequently lim supn→∞ E[ V̂n(λ̂n)
Ĥn�0(λ̂n)∨1

] ≤ γ.
Q.E.D.

PROOF OF THEOREM 6.3: We first show that λ̂1n
p→ λ∗

1 and λ̂2n
p→ λ∗

2; then by the con-
tinuous mapping theorem, we have λ̂n = max{λ̂1n� λ̂2n}

p→ max{λ∗
1�λ

∗
2} = λ∗. The second

statement follows from Lemma A.3. The first statement holds because by the argument
for Theorem 6.2, we have

sup
t≥1−γ

∣∣Q̂n(t) −Q(t)
∣∣ p→ 0� (A.10)

And therefore, for any ε > 0 not too large, we have inft≤λ∗−ε Q(t) > γ and Q(λ∗ + ε) > γ

by monotonicity of Q(t). Combined with (A.10), we have λ̂1n
p→ λ∗

1.
Now define

Hn�2 = 1
n

n∑
i=1

vα�i1{vα�i ≥ t}�

Ĥn�2(t) = 1
n

n∑
i=1

v̂α�i1{v̂α�i ≥ t}�

Ûn(t) = 1
n

n∑
i=1

1{θi ≥ θα� v̂α�i ≥ t}�
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FIGURE S.1.—The left panel plots the level curves for the posterior tail probability criterion and the middle
panel depicts the level curves for the posterior mean criterion. The right panel plots the selection boundary
based on posterior mean ranking (shown as the red dashed lines) and posterior tail probability ranking (shown
as the black solid lines) for α = 5% and γ = 10% with G(θ�σ2) following a three-point discrete distribution.

Un(t) = 1
n

n∑
i=1

1{θi ≥ θα� vα�i ≥ t}�

H2(t) = P(θi ≥ θα� vα�i ≥ t) = αβ(t)�

It suffices to prove that 1
n

∑n

i=1 1{θi ≥ θα� v̂α�i ≥ λ̂n}
p→ H2(λ∗). Using a similar argument

as for Theorem 6.2, we can show

sup
t∈[0�1]

∣∣Ĥn�2(t) −H2(t)
∣∣ p→ 0�

sup
t∈[0�1]

∣∣Ûn(t) −H2(t)
∣∣ p→ 0�

Combining this with the result that λ̂n

p→ λ∗, we have 1
n

∑n

i=1 1{θi ≥ θα� v̂α�i ≥ λ̂n}
p→

H2(λ∗) by continuity of H2. Q.E.D.

APPENDIX B: A DISCRETE BIVARIATE EXAMPLE

In this appendix, we consider a case where G is a discrete joint distribution in the pairs
(θ�σ), in particular, G(θ�σ) = 0�85δ(−1�6) +0�1δ(4�2) +0�05δ(5�4). In contrast to the discrete
example in Section 4.4, the unobserved variance σ2 is now clearly informative about θ for
this distribution G.

We will focus on the capacity constraint α = 0�05 so θα = 5. For T = 9, the level curves
for tail probability and posterior mean are shown in Figure S.1 and the selection set com-
parison for one sample realization in Figure S.2. The right panel of the figure plots the
selection boundaries for the two ranking criteria for γ = 10%. The non-monotonicity of
vα(y� s) in both y and s is apparent. The posterior mean criterion based on E(θ|Y�S)
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FIGURE S.2.—Selection set comparison for one sample realization from the three-point discrete distribution
model. The left panel shows in black circles the agreed selected elements by both the posterior mean and
posterior tail probability criteria under the capacity constraint; extra elements selected by the posterior mean
are marked in green and extra elements selected by the posterior tail probability rule are marked in red. The
right panel shows the comparison of the selected sets under both the capacity and FDR constraint with α= 5%
and γ = 10%.

prefers individuals with smaller variances compared to the rule based on the tail prob-
ability. Since sample variances S are informative about θ, when the sample variance is
small and selection is based on posterior tail probability, the oracle is aware that such a
small sample variance is only likely when θ = 4, hence will only make a selection when
we observe a very large y . As a result, the oracle sets a higher selection threshold on y to
avoid selecting individuals with true effect θ = 4. On the other hand, the posterior mean
criterion also tries to use information from the sample variance, but not as effectively for
our selection objective. This can be seen in the level curves in the middle panel of Fig-
ure S.1. When the sample variance is small, the posterior mean shrinks very aggressively
toward 4, thereby sacrificing valuable information from y . For a wide range of values for
the sample mean y , the posterior mean delivers a value close to 4, thus failing to distin-
guish between those with θ = 5 and those with θ = 4. Consequently, the posterior mean
rule sets a lower thresholding value on y for the selection region when sample variance is
small, resulting in inferior power performance, as shown in Table S.I.

Table S.I reports several performance measures over 200 simulation repetitions with
n = 50�000. There, we consider four additional methods for ranking:

• MLE: ranking of the maximum likelihood estimators Yi for each of the θi,
• P-values: ranking of the P-values of the conventional one-sided test of the null hy-

pothesis H0 : θ < θα,
• PM-NIX: ranking of the posterior means based on the normal-inverse-chi-square

(NIX) prior distribution,
• TP-NIX: ranking of the posterior tail probability based on NIX prior distribution.
The first two of these selection rules ignore the compound decision perspective of the

problem entirely. The other two ranking criteria we consider are based on posterior mean
and tail probability assuming G follows a normal-inverse-chi-square (NIX) distribution
(denoted as PM-NIX and TP-NIX in Table S.I). The parameters of the NIX distribu-
tion are estimated from the data; hence, these rules can be viewed as generalization of
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TABLE S.I

PERFORMANCE COMPARISON FOR RANKING PROCEDURES BASED ON POSTERIOR MEAN, POSTERIOR TAIL
PROBABILITY, THE P-VALUE, AND THE MLE OF θi . ALL RESULTS ARE BASED ON 200 SIMULATION

REPETITIONS WITH n= 50�000 FOR G FOLLOWING THE THREE-POINT DISCRETE DISTRIBUTION AND T = 9
OR WHEN G IS ASSUMED TO FOLLOW A NORMAL-INVERSE-CHI-SQUARE DISTRIBUTION. FOR THE FIRST TWO

ROWS, NUMBERS REPORTED IN THE TABLE CORRESPOND TO PERFORMANCE WHEN BOTH CAPACITY AND
FDR CONSTRAINTS ARE IN PLACE. FOR THE LAST FOUR ROWS, ONLY CAPACITY CONSTRAINT IS IN PLACE.

γ = 1% γ = 5% γ = 10%

Power FDR SelProp Power FDR SelProp Power FDR SelProp

PM 0�217 0�010 0�011 0�482 0�050 0�025 0�580 0�100 0�032
TP 0�252 0�010 0�013 0�561 0�050 0�030 0�697 0�100 0�039
P-value 0�651 0�349 0�050 0�651 0�350 0�050 0�651 0�349 0�050
MLE 0�611 0�390 0�050 0�611 0�390 0�050 0�610 0�390 0�050
PM-NIX 0�611 0�390 0�050 0�611 0�390 0�050 0�610 0�390 0�050
TP-NIX 0�619 0�382 0�050 0�619 0�382 0�050 0�618 0�382 0�050

the James–Stein estimator for homogeneous variances and the Efron–Morris shrinkage
estimator for known heterogeneous variances case. We refer the details of the NIX dis-
tribution and the posterior distribution of (θ�σ2) to Example 5.1.

We report the power and false discovery rates for the posterior mean (denoted as PM)
and posterior tail probability (denoted as TP) selection as well as the proportion of se-
lected observations for α = 5% and for several different γ under both capacity and FDR
control. For all other four selection rules, we only impose the capacity constraint, as how
they are usually implemented in current practise. For the PM and TP rules, from the pro-
portion selected observations we can infer whether the FDR constraint or the capacity
constraint is binding in each configuration. Ranking based on the posterior tail probabil-
ity clearly has better power performance for each of the configurations when compared
to the posterior mean ranking. When selecting as few as 5%, FDR constraints are bind-
ing for both PM and TP rule for all ranges of γ ∈ {1%�5%�10%}. Among all the other
rules, we see that the false discovery rate is around 40% and PM-NIX has identical per-
formance as ranking based on the MLE for θ; this can be understood by noting that the
posterior mean of θ under the NIX prior is simply linear shrinkage of the MLE of θ,
hence it does not alter individual rankings between the two methods. TP-NIX behaves
similarly to PM-NIX, with slightly better power and slightly lower false discovery rate.

APPENDIX C: A COUNTEREXAMPLE: NON-NESTED SELECTION REGIONS

Thus far, we have stressed conditions under which selection regions are nested with re-
spect to α, that is, for α1 <α2 < · · ·<αm, we have 
α1 ⊆
α2 ⊆ · · · ⊆ 
αm , for the selection
regions. However, this need not hold when there is variance heterogeneity, and when nest-
ing fails, we can have seemingly anomalous situations in which units are selected by the
tail probability rule at some stringent, low α, but are then rejected for some less stringent,
larger α’s. To illustrate this phenomenon, we will neglect the FDR constraint and focus
on our discrete mixing distribution, G = 0�85δ−1 + 0�10δ2 + 0�05δ5, with σ ∼ U[1/2�4].
The selection regions are depicted in Figure S.3 for α ∈ {0�04�0�05�0�06�0�08}. Units are
selected when their observed pair, (yi�σi), lies above these curves for various α’s. When
σ is small, we see, as expected, that selection is nested: if a unit is selected at low α, it
stays selected at larger α’s. However, when σ = 3, we see that there are units selected at
α= 0�05 and even α= 0�04 and yet they are rejected for α= 0�06. How can this be?
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FIGURE S.3.—Oracle selection boundaries (with just capacity constraint) for several α levels for the tail
probability criterion (left panel) and posterior mean criterion (right panel) with a discrete example with
G = 0�85δ−1 +0�10δ2 +0�05δ5, and σ ∼U[1/2�4]. Crossing of the boundaries implies that the selection regions
are non-nested as explained in the text.

Imagine you are the oracle, so you know G, and when you decide to select with α= 0�06,
you know that you will have to select a few θ = 2 types, since there are only 5 percent of
the θ = 5 types. Your main worry at that point is to try to avoid selecting any θ = −1
types; this can be accomplished but only by avoiding the high σ types. In contrast, when
α= 0�05, so we are trying to vacuum up all of the θ = 5 types, it is worth taking more of a
risk with high σ types as long as their yi is reasonably large.

The crossing of the selection boundaries and non-nestedness of the selection regions
are closely tied up with the tail probability criterion and the α dependent feature of the hy-
pothesis. If we repeat our exercise with the same G, and σ distribution, but select accord-
ing to posterior means, we get the nested selection boundaries illustrated in Figure S.3.
Proposition C.1 establishes this to be a general phenomenon for any distribution G.

It should be noted that the crossing of selection boundaries we have illustrated seems to
have been anticipated by Henderson and Newton (2016), who considered similar tail cri-
teria. They proposed a ranking scheme that assigns rank equal to the smallest α for which
a unit would be selected as a way to resolve the ambiguities generated by crossing. We
do not see a compelling decision theoretic rationale for this revised ranking rule; instead,
we prefer to maintain some separation between the ranking and selection problems and
focus on risk assessment as a way to reconcile them.

The risk based on the loss function defined in (3.1) clearly depends on α and γ. More
specifically, it consists of three pieces: the leading term has the interpretation of “missed
discovery” probability, which we try to minimize, and the second and third pieces corre-
spond to the FDR and capacity constraints, respectively, each weighted by a Lagrangian
multiplier. Focusing on the first term, we have

E
[
Hi(1 − δi)

] = E
[
1{θi ≥ θα}(1 − δi)

]
= P[θi ≥ θα] −E

[
δi1{θi ≥ θα}

]
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FIGURE S.4.—Oracle risk evaluation for several α levels for the tail probability criterion and a discrete
example with G= 0�85δ−1 +0�10δ2 +0�05δ5, and σ ∼U[1/2�4]. The solid lines correspond to the evaluation of
the loss function specified in (3.1) with both capacity and FDR control constraints. The dotted line corresponds
to oracle risk when only the capacity constraint is imposed.

= P[θi ≥ θα] −
∫ ∫ +∞

θα

[
1 −�

((
tα(λ�σ) − θ

)
/σ

)]
dG(θ) dH(σ)�

where λ depends on α, and γ is determined by either the false discovery rate control or
the capacity constraint, whichever binds.

A feature of discrete mixing distributions, G, is that the first term in the loss, P(θi ≥
θα), is piecewise constant, with jumps occurring only at discontinuity points of G, while
the second term depends on both θα and the cut-off values tα(λ�σ). When the capacity
constraint binds, there exist ranges of α such that θα remains constant, while tα(λ�σ)
decreases for each σ ; hence, the risk with just capacity constraint binding is a decreasing
function for α in the interval (0�05�0�15). On the other hand, when the FDR constraint
binds, it can be shown that the cut-off value tα(λ�σ) is constant. To see this, recall that the
cutoff λ determined by the FDR constraint is defined as E[(1 − vα(Y�σ))1{vα(Y�σ) ≥
λ}] = γP(vα(Y�σ) ≥ λ), so when θα is constant over a range of α, the distribution of
vα(Y�σ) does not change, and consequently, the value λ is constant over that range of α.

Figure S.4 evaluates risk based on the optimal selection rule for various α and FDR
levels, γ ∈{0�01�0�05�0�1�0�15�0�3}. The solid curves correspond to risk evaluated at the
optimal Bayes rule defined in Proposition 4.1. The dotted line corresponds to the risk
evaluated at the Bayes rule when only the capacity constraint is imposed. As γ increases,
the risk decreases as expected. For FDR levels as stringent as γ = 0�01, the FDR con-
straint binds and the risk is piecewise constant. As the FDR level is relaxed, there are
ranges of α such that capacity constraint becomes binding, and the risk decreases after
the initial jump at α= 0�05.

The evaluation of the risk for this particular example indicates that it is easier to select
the top 5% individuals, those with θ = 5. As we intend to select more in the right tail,
we are facing more uncertainty. This also motivates a more systematic choice of (α�γ).
Although selection based on the tail probability criterion can lead to non-nested selection
regions, we conclude this subsection by demonstrating that posterior mean selection is
necessarily nested.
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PROPOSITION C.1: Let the density function of y conditional on θ and σ be denoted as
f (y|θ�σ). If selection is based on the posterior mean, δi ={M(y�σ) ≥ c(α�γ)} with

M(y�σ) :=

∫
θf (y|θ�σ) dG(θ)∫
f (y|θ�σ) dG(θ)

�

and c(α�γ) is chosen to satisfy both the capacity constraint at level α and the FDR constraint
at level γ, then the selection regions, defined as �α�γ = {(y�σ) : M(y�σ) ≥ c(α�γ)}, are
nested, that is, for any α1 >α2, �α2�γ ⊆�α1�γ .
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