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S1. OPTIMAL TREATMENT ASSIGNMENT

IN SECTION S2, WE DESCRIBE THE EXPERIMENTAL setup and make reference to the
fact that the choice of treatment assignment nt for each t = 1� � � � � T is a finite dynamic
stochastic optimization problem that can be solved using backward induction.

The state at the end of wave t − 1 is given by (mt−1� rt−1), and the action in t is given
by nt . The transition between states is described by mt = mt−1 + nt , rt = rt−1 + st . The
success probabilities conditional on the choice of treatment assignment follow a Beta-
Binomial distribution and are given by
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Denote by Vt the value function after completion of wave t, that is, expected welfare
assuming that all future treatment assignment decisions will be optimal, and that the op-
timal policy is implemented after the experiment. Vt is a function of the state (mt � rt).
After the experiment is concluded, the value function is given by expected welfare for the
optimal choice of policy, based on current beliefs:
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Denote by Ut the action value function, given by expected welfare at the beginning of
wave t when treatment assignment is nt , assuming all future assignment decisions will be
optimal:

Ut(mt−1� rt−1�nt)=
∑
s:s≤nt

P(st = s|mt−1� rt−1�nt)Vt(mt−1 + nt � rt−1 + s)� (S1.3)
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where the probabilities for each vector of successes are given by Equation (S1.1). Then
the period-t value function and the optimal treatment assignment satisfy

Vt−1(mt−1� rt−1)= max
nt :∑d n

d
t ≤Nt

Ut(mt−1� rt−1�nt)�

n∗
t (mt−1� rt−1)= argmax
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Ut(mt−1� rt−1�nt)�
(S1.4)

Together, these equations define a solution for the experimental design problem.

Computational Complexity

One can solve for the optimal treatment assignment using backward induction. This
involves enumerating all possible actions and associated outcomes in each time period.
With larger sample sizes Mt = ∑

t′≤t Nt′ and a greater number of waves T and treatments
k, however, solving for the optimal assignment quickly becomes infeasible, motivating our
simpler exploration sampling approach.

We assume full memoization, where the value function is calculated and stored for
every possible state, and then action values are calculated using backward induction.
This approach minimizes the growth of computational time in terms of the number
of states and actions; cf. Erickson (2019), Chapter 3. At the end of wave t, there are(
Mt+k−1

k−1

) = O(Mk−1
t ) possible values mt , and for each mt there are

∏
d m

d
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t ) pos-
sible values of rt , so that the number of possible states at the end of wave t is of order
O(M2k−1

t ).
Suppose t < T . Then we need to calculate the value function in each of the possi-

ble states (mt � rt) by maximizing over the expected action value for each possible ac-
tion nt+1, where the expectation is over each possible realization of st+1. There are(
Nt+1+k−1

k−1

) = O(Nk−1
t+1 ) possible actions nt+1, and

∏
d n

d
t+1 = O(Nk

t+1) possible realizations
of st+1 for each nt+1, so that the required computation time for Vt at a given state is of
order O(N2k−1

t+1 ). For t = T , we only need to maximize over k possible actions (policy
choices).

Collecting terms, we get that the computational time complexity for dynamic program-
ming with full memoization in this setting is of order
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and the memory complexity is of order
∑T

t=1 O(M2k−1
t ).

S2. OPTIMAL DESIGN IN A SIMPLE EXAMPLE

In this section, we discuss optimal experimental designs in a simple example with two
waves to show that the optimal assignment in wave 2 assigns more units to those treat-
ments that performed better in wave 1.

Suppose we have 10 experimental units that we can enroll in two waves. There are three
treatments. We impose a uniform prior for θ.

A first question the designer might want to consider is how to divide the total sample of
10 units between the two waves. For each division (N1�10 −N1) between the two waves,
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FIGURE S1.—Dividing the sample across waves.

we can calculate expected welfare V0 at the outset of wave 1, using the value function
derived above.

Figure S1 plots expected welfare as a function of the sample size N1 in wave 1. The
boundary cases N1 = 0 and N1 = 10 correspond to an experiment with only one wave.
The figure shows that the optimal split assigns either five or six units to the first wave.
Splitting the sample in this manner allows us to observe the outcomes from the first-wave
assignment (e.g., of two units per treatment if N1 = 6) and then assign treatments for
optimal learning to the remaining units in the second wave.1

Assigning Treatments in Wave 2

Based on Figure S1, we set N1 = 6. Due to the symmetric prior, it is optimal to assign
two units to each of the three treatments in wave 1. Optimal assignment in wave 2, where
N2 = 4, depends on the outcomes of the first wave.

We explore several scenarios in Figure S2. This figure plots expected welfare for any
second-wave treatment assignment in the simplex n1

2 + n2
2 + n3

2 = 4, conditional on first-
wave outcomes. For each scenario, the number of successes in each treatment in the first
wave determines the prior for treatment assignments in the second wave. Our uniform
prior for θ implies a Beta posterior with αd

1 = 1 + sd1 and βd
1 = 1 + 2 − sd1 for sd1 ∈ {0�1�2}

we get. This Beta posterior has a mean of (1 + sd1 )/4.
The four outcome scenarios we consider are s1 = (1�1�1), s1 = (1�1�2), s1 = (1�1�0),

and s1 = (2�2�0). In the first scenario, each treatment had one success and one failure,
leading to a posterior that is again symmetric across treatments. In this scenario, shown
in the top left of Figure S2, it is optimal to assign two units to either one of the three
treatments, and one unit to each of the other two arms.

In the second scenario, treatment 3 performed better than treatments 1 and 2. In this
scenario, shown in the top right of Figure S2, it is optimal to assign three units to treat-
ment 3, and one unit to either one of the other two arms. In the third and fourth scenar-
ios, treatment 3 performed worse than treatments 1 and 2. In these scenarios, shown in

1The welfare differences across alternative designs are relatively small in this setting, owing to the small
number of units involved.
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FIGURE S2.—Expected welfare as a function of treatment assignment.

the bottom part of Figure S2, it is optimal to assign no units to treatment 3, three units
to either one of treatment 1 or 2, and one unit to the other treatment. Interestingly, this
dominates (though not by much) the assignment of two units to each of treatment 1 and 2.

We can compare these with the exploration sampling assignment probabilities. Table SI
lists the Beta distribution parameters along with the Thompson shares and exploration

TABLE SI

THOMPSON SHARES AND ASSIGNMENT SHARES FOR DIFFERENT BETA POSTERIORS

α1�2 β1�2 α3 β3 p1�2 p3 q1�2 q3

2 2 2 2 0.3333 0.3333 0.3333 0.3333
2 2 3 1 0.1548 0.6905 0.2752 0.4496
2 2 1 3 0.4548 0.0905 0.4288 0.1424
3 1 1 3 0.4940 0.0120 0.4884 0.0232
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shares for each scenario. The Thompson sampling share for the third treatment (which in
each scenario has different numbers of successes from the first two treatments) is given
by ∫ 1

0
F(x�α1�2�β1�2)

2 · f (x�α3�β3)dx�

where

f (x�α�β)= 1
B(α�β)

xα−1(1 − x)β−1�

F(x�α�β)= B(x;α�β)
B(α�β)

�

Discussion

In each of these examples, the largest number of units is assigned to the treatment
arms with the highest expected return. In addition, one unit is assigned to at least one
close competitor. This reflects that more precise effect estimates for treatment arms with
low expected return are less likely to affect the ultimate policy decision. The shift towards
more successful treatments occurs even though our objective function does not assign any
weight to the welfare of experimental units, because there is no exploitation motive. This
property is mimicked by the exploration sampling algorithm.

For this small sample, there are also properties that exploration sampling does not
replicate. In particular, an interesting feature is that a symmetric assignment is gener-
ally not optimal, even when two treatments have the same current prior. Exploration
sampling then produces equal shares for those two treatments. However, in the second
to fourth scenario above, the prior distribution for treatments 1 and 2 is the same, but
the optimal design assigns either more units to treatment 1 or to treatment 2. This re-
flects a non-convexity in the value of information, due to the concave objective func-
tion maxd(E[θd|mT � sT ] − cd). This situation is analogous to option pricing, where higher
volatility can increase the value of a stock option which is only exercised for high profit
realizations.

S3. DETAILS FOR THE CALIBRATED SIMULATIONS

In Section 5 of the paper, we use data from three real experiments to conduct calibrated
simulations of the various algorithms we consider. Here we describe these experiments in
more detail and show some additional graphs of the policy regret distributions.

The Experiments Used for Calibration

Ashraf, Berry, and Shapiro (2010) conducted a field experiment with about 1,000 house-
holds in Lusaka, Zambia. During a door-to-door sale of Clorin, a water disinfectant, each
participating household was offered to buy a bottle at a randomly chosen price, ranging
from 300 to 800 Zambian Kwacha. The study varied the offer price as well as the actual
purchase price and measured the ex post uptake of Clorin for water disinfection at differ-
ent purchase prices, in order to test for the presence of a sunk-cost effect. The outcome
we consider here is the “first stage,” that is, whether the household agreed to buy the
bottle of Clorin at the original offer price.
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Bryan, Chowdhury, and Mobarak (2014) conducted a field experiment in rural
Bangladesh. Households were randomly assigned a cash or credit incentive of $8.50 (an
amount covering round-trip travel), or an information treatment, conditional on a house-
hold member migrating during the 2008 monga (lean) season. The outcome we focus on
is again take-up, that is, whether at least one household member migrated (the first stage
of the original paper).

Cohen, Dupas, and Schaner (2015) conducted a field experiment in three districts of
Western Kenya. Pharmacy visitors were randomly assigned one of three subsidy levels
for the purchase of artemisinin combination therapies (ACT), an antimalarial drug. They
were also randomly offered a rapid detection test (RDT) for malaria. The treatments in
this experiment are three subsidy levels with or without RDT, and a control group. The
outcome is whether the subject actually bought the ACT.

Plots of Simulation Results

Figures S3 to S5 compare the distribution of regret between non-adaptive assignment
and exploration sampling with probability mass functions (histograms) and quantile func-
tions, for two, four, and ten experimental waves.

The uniformly lower quantile function for exploration sampling, relative to non-
adaptive assignment, implies that its distribution of regret is first-order stochastically
dominated. The integrated difference between the two quantile functions equals the de-
crease in average regret (increase in average welfare) that is gained from switching to
exploration sampling.

FIGURE S3.—The distribution of policy regret (top) and regret quantiles (bottom) in Ashraf, Berry, and
Shapiro (2010).
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FIGURE S4.—The distribution of policy regret (top) and regret quantiles (bottom) in Bryan, Chowdhury,
and Mobarak (2014).

FIGURE S5.—The distribution of policy regret (top) and regret quantiles (bottom) in Cohen, Dupas, and
Schaner (2015).
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