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BY LIANGJUN SU, ZHENTAO SHI, AND PETER C. B. PHILLIPS'

THIS SUPPLEMENT IS COMPOSED OF FOUR PARTS. Section S1 contains the
proofs of some technical lemmas for the proofs of the main results in Sec-
tion 2. Section S2 gives bias correction formulae in linear panel data models
for both PPL. and PGMM estimation. Sections S3 and S4 contain some addi-
tional simulation and applications results, respectively.

S1. SOME TECHNICAL LEMMAS FOR THE PROOFS OF THE MAIN RESULTS IN
SECTION 2 OF THE PAPER

In this appendix, we state and prove some technical lemmas that are used
in the proofs of the main results in Section 2. We first state an exponential
inequality for strong mixing processes.

LEMMA S1.1: Let {{,,t =1, 2, ...} be a zero-mean strong mixing process, not
necessarily stationary, with the mixing coefficients satisfying a(t) < c,p” for some

€ > 0and p € (0,1). If sup,_,_; |{/| < My, then there exists a constant C, de-
pending on c, and p such that forany T > 2 and € > 0,

T
C()E
P <e - 7
(Zg >€)_ Xp( véT+M%+eMT<1nT>2>

where vy =sup,_,[Var(Z,) +23 ", | Cov(Z, £)I].

PROOF: Merlevede, Peilgrad, and Rio (2009, Theorem 2) proved (i) under
the condition a(7) < exp(—2c7) for some ¢ > 0. If ¢, = 1, we can take p =
exp(—2c) and apply the theorem to obtain the claim. Q.E.D.

The above lemma is used in the proof of the following lemma.

LEMMA S1.2: Let £&(wy; ¢) be a R%-valued function indexed by the parameter
¢ € @, where @ is a convex compact set in RP*! and E[&(w;;; ¢)] = 0 for all i,
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t, and(_b € @. Assume thatihere exists af_unction M (w;;) such that || E(w;;; ¢) —
E(wis Pl < M(wi)lld — ¢l for all ¢, d € @ and sup,, [|E(wi; P < M (wy,).
Assume that E|M (w;,)|? < oo for some q > 6 such that N = O(TY*™1). Let {¢;}
be a nonstochastic sequence in ®. Then

() max; oy |57 X0y €wis )| = Op((INT)%),
(i) max;.-y P(|| 7 ST Ewis )| = cA) = o(N ") for any given ¢ > 0,

(i) P(max,cy [|I7 ST Ewis )1l = cA) = o(N™Y) for any given ¢ > 0 if
N2 =0(T*),
where A = Ayr satisfies (InT)> = o(TV?)).

PROOF: (i) Let nyr = T"2. Let t; be an arbitrary d; x 1 nonrandom vector
with [|ee]| =1. Let 1;; = 1{[|{(w;;; )|l < myr} and 1;, =1 — 1;,. Define

E1(wis i) = L;{f(wit; o)l — E[f(wn; d)i)lit]};

E(wis i) = L;cf(witl ¢i)Iits and & = _L;E[f(wit; d)i)iit]-
Apparently, & (wi; ¢:) + E(wis i) + & = LE(wis ¢i) as E[E(wi; ¢i)] = 0.
We prove the lemma by showing that (i1) max;<;<y ||% Ztil E(wi; )l =
Op((InT)), (i2) Plmaxiy Il 77 Y Ex(wis ¢l = c(InT)*] = o(1) for any

given ¢ > 0, and (i3) max,;<y || 7= S &l =0((InT)).
First, we prove (i3). By the Holder and Markov inequalities,

max
1<i<N

< T2 max max HE[f(wiz; ¢i)Iil] H

1<i<N 1=<t<T

1 T
— ) &3

< T2 ||
<T ggg%{EHf(wmd)l) }

X {P(” Ewi )| > T1/2)}<q—2)/q

< T"?¢;, max max{P(|é(wi; &i)| > Tl/z)}(qu)/q

1<i<N 1<t<T

= Ty, max max (TR (| s 0)])} "

= €140, T " =0((InT)’) forany g >3,
where

¢iy = max max (E[ &, 60|} and

-2
2 = ey max (B(|€ws S0 )}
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Next, we prove (i2). Noting that || \/LT Ztil & (wis ¢l > (InT)? implies that
max; <7 || E(w;; é;)|l > mnr, by the Boole and Markov inequalities, the domi-
nated convergence theorem, and the stated conditions, we have

1<i<N

P|:max

1z
ﬁ Z E(wis )| = c(In T)3:|
=1

< P[max max || E(wyi; )| > nNT]

1<i<N 1<t<T

< NT max max P(M(w,,) > nn7)

1<i<N 1=<t<T

T
= Ta" E%E,EXEHM(W”)V [M(w;) > T"}]

=o(NT'" %) =0o(1).

Now, we prove (il). We observe that for any C > 0,

mew,t, )

>C(nT) }

<i[

e Z&(wn, ¢:))|=C(nT) }

We choose ¢ > 0 and divide @ into subsets @;, j =1, ..., n, such that ||¢ —
|l < /T forall ¢, ¢ € @;, where n, = O(T»*Y7), Then

|: (wir; ¢1)| = C(InT) i|
N
< ;P[j}i}; T2 Z&(wm ¢)| = CnT) }
N  ng T
<y [Sup Z&(wﬁ; ¢)| = C(ln T)ﬂ.
i=1 j=1 [ %% =1
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Let ¢; € @;. Then for any ¢ € @;, we have

7 L)
— &i(wi; d)
77

1 7
=< ﬁZfl(wit;ij) +
1=1

7
e Z[fl(wit; $;) — E(wi; )] H

1 T T
< ﬁ;a(wﬂ;dn T’Z (wi)llp — &
1 & 26 <
< ﬁZa(wit; b)) 72 M (w;) —E M(ww)]}‘
t=1 =1

2e o
+ = ;E[M(wit)].

It follows that

P| sup
Ped;

1 T
N Y &wi; ¢)| = Cin Tf}
t=1

T
EP[ %Z&(wit;%) ZC(lnT)3/3:|
t=1
26
+P[ ?;M(wn) — E[M(w;)]| = C(In T)3/3:|

as P[£ 3" E[M (w;)] = C(InT)*/3] =0. Then

1z
ﬁ Zf(wit; b:)

1<i<N

P|:max

> C(In T){|

<ZZP|:

i=1 j=1

—I—ZZP[

i=1 j=1

Zgl(wtt ¢j

> C(InT) /3]

2
° ZM(w,» E[M (w;)]

> C(In T)3/3]
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For the first term, we have, by Lemma S1.1,

55

i=1 j=1

Lz
|ﬁ ;fl(u}n; o))

>C(nT)* /3}

2 6
5 Canexp<_ C2CyT(InT)*/9 )

2C
VT + 403, + 777NTT1/2(11'1 T)*

2 6
_Cexp (_ C2C,T(InT)%/9

5°C +lnN+1nn8>
VT +4T + ?T(ln T)

— 0 for sufficiently large C.

Similarly, we can show that Y7, 3% P[|Z Y[ M(w;) — E[IM(w)]| =
C(nT)*/3]1=o(1). Then (il) follows. This completes the proof of (i).

(ii) Let &;, &, and &;;, be as defined in (i). Noting that &;;, is nonrandom,
it suffices to show that for any given ¢ > 0, we have (iil) N max,;<x P(||% X

Y Ew ¢l = ed) = o(1), (ii2) Nmaxicoy P(IF X0 éx(wis ) =
cA) = o(1), and (ii3) max,<icy | £ 1, £l = 0()). Following the analysis of
T g i

JT thl §3lt m (1), we have

1 T
7253,»,

where we use the fact that A > T-?(In T')* and g > 3 by the stated conditions.
Thus, (ii3) follows. Following the analysis of \/LT Z,il & (wip; ;) in (i2), we have

> c)\)

< N max P(fnﬁ’%” E(wis )| > 77NT>

1<i<N

max

2— 2
‘ <10, T* P = 0(A),
1<i<N

1<i<N

NmaxP(

1 T
‘T Z & (wis; b))
=1

< NT max max P(M (w;;) > nn7)

1<i<N 1=t<T
=o(NT" %) =0o(1).
That is, (ii2) follows. For (iil), the analysis is similar to that of

max, -,y ||ﬁ Zszl & (wy; ¢y)|| in (i1) with (InT)* replaced by T'/>A. We now
require 7?1 /(InT)?> — oo as (N, T) — oo. This completes the proof of (ii).
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(iii) Let &, &, and &;; be as defined in (i). Noting that &3, is non-
random, it suffices to show that for any given ¢ > 0, we have (iiil) N -

P(max,cioy |2 Y1, &(wis d)Il = cd) = o(1), (iii2) N - P(maxicioy |2 x
YL Ewis ¢l = cA) = o(1), and (jii3) max,—iy |+ Y1, &ull = o(A). Fol-
lowing the analysis of \/LT Z; &, in (i), we have

1 T
7;&1

where we use the fact that A > T-"?(In T')* and g > 6 by the stated conditions.
Thus, (iii3) follows. Following the analysis of % Z:T=1 &(wy; ¢;) in (12), we

have
> C/\>

< N-P(max max | E(wi; b)) | > TINT)

1<i<N 1=<t<T

max < €10y T* P = 0(N),

1<i<N

N-P(max

1<i<N

1 T
T Zfz(wiz; bi)
=1

< N°’T max max P(M (w;) > nyr)

1<i<N 1<t<T
=o(N*T" %) = o(1).
That is, (iii2) follows. For (iiil), the analysis is similar to that of
max, iy ||%Zti1 & (wy; ¢p)|| in (i1) with (InT)* replaced by T'?A. We

now require 7V?A/(InT)* — oo as (N, T) — oo. This completes the proof
of (ii). Q.E.D.

Recall that W(B, u) = + Y, ¢r(wi: B, ) and Wi(B, ) = + 31 Blh(wy;
B, w)]. Recall that @;(B;) = argmin,, % Z;T=1 i (wis; Bi, wi). The following
three lemmas study the properties of 1IAf,-( B, w) and 4;(B;).

LEMMA S1.3: For any n > 0, we have P[maxlSiSNsup(B,M)|¢’,«(/3,/LL) —
Vi(B, W) =nl=0(N1).

PROOF: The proof is analogous to that of Lemma S1.2(iii). Q.E.D.

LEMMA S1.4: For any n > 0, we have P[max,;<y |0:(B;) — mi(B:)| > m] =
o(N~Y.

PROOF- Let &€= mini[infui:lui—ui(ﬁi)bn lp\i(Bi’ lu‘l) - %(Bi’ /“(‘l(Bl))]‘ Then &>
0 by Assumption Al(ii) and (v). Then, conditional on the event A =
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{maxi<izy sup s ,, | %(B, 1) — Wi(B, w)| < }&}, we have

" 1
inf Yi(Bi, i) > inf Vi(Bi, mi) — €

lwi—wi (B> lwi—ni (B> 3
2
> q’i(ﬁi, Mi(Bi)) + 58

o 1
> ‘I’i(ﬁi, Mi(Bi)) + 3¢

On the other hand, ‘i’i(Bi,ﬁi(Bi)) < @(Bi,ui(ﬁi)). It follows that
P(max;_;y |4i(B:) — mi(B)| <m) < P(A)=0o(N~') by Lemma S1.3. Q.E.D.

LEMMA S1.5: (i) :i(B:) — mi(Bi) = Op(T~'72) for each i,

(i) max,<ioy [2:(B:) — mi(B)| = Op(T*(InT)?),

(iil) max -y [W;(Bi, 1i(Bi)) — Wi(Bi, wi(B))| = Op(T*(InT)?),

(iv) P(max,<;-y |i(B:) — mi(B:)| = CT*(InT)**") = o(N ") forany v > 0
and C > 0,

(V) P(max,<iy |i(Bi, i(B) — Wi(Bi, wi(B))| = CT*(InT)**") =
o(N~Y) forany v > 0and C > 0.

PROOF: (i)-(ii) Noting that f;(B8;) = argmin,, %Z?zltjf(w,-t;ﬁi,ui), we
have

T
0= ZVi(wn; Bis 1:(Bi))

1

N| =

t:

|
il
[~

Vi(wn; Bi, Mi(Bi))

t

Il
-

1~ . R
o DV (wis By fu(B) [ BD) — (B,
t=1

where [;(8;) lies between (;(8;) and w;(B;) for each i. It follows that

(Sl) ﬁ“i(IBi) — wi(B:)
T

, -1
_ 5 1
:_|:T2Vim(wit; ,B,-,/.Li(Bi)):| TZVi(wit;Bi,/vLi(Bi))

t=1



8 L. SU, Z. SHI, AND P. C. B. PHILLIPS

provided lTZthl V¥ (wi; Bi, i(Bi)) is asymptotically nonvanishing. Let
Vi(B:)) =Vi(w;; Bi, wi(Bi)). Noting that E[V,(8;)] =0 and

T

Cov(Vi(B:), Vis(B))
1

1 — 1 &
Var(?;%,(ﬂa) =3

t=1 s=

T T
< 8 max{E|V,. (B[} ais 2 ZZ )
t=1 s=1

<8maX{E|V,t(3)| Z/q Z =0 (%)

=1

by the Davydov inequality (e.g., Corollary A.2 in Hall and Heyde (1980)),
we have % Zf:l Vi.(Bi) = Op(T~'?) by the Chebyshev inequality. In addition,
by a simple application of Lemma S1.2(i), we can show that max;.;<y |% X
> V(B = Op(T~2(InT)%).

or % Z; V¥ (wi; Bi, i(Bi)), we make the following decomposition:

s .

N|

T
>V (wis Bis ui(B1))
t=1

1 — A
=7 ZE[V;M' (wir B mi(B))]
=1
1 T
o DAV (wis Bir i (B0) — B[V (wis Bir pa(B0)]}
=1
T
T Z Wit Bl: MI(B )) (wlla Bl’ i (B ))}

By Assumption AL(v), 7 3, EIV* (wirs Bis si(B))] = Hiyu(B)) = ¢ > 0 uni-
formly in i. By a simple application of Lemma S1.2(i), we have

wtta ﬁl’ I‘LI(B )) [ (wll7 IBU Ml(ﬁ ))]} :01’(1)-

M:

l<z<N

t 1
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Next, by Assumption Al, and Lemmas S1.2(i) and S1.4, we have

wl,, ﬂ,, /-LI(B )) (wll7 1815 Ml(ﬂ ))]‘

N[ =
Mﬂ

G

t

1

1 < 5
< max ;Mmi,)!m(/ai) — wi(BY)|

1<i<N

1<i<N T
t=1

1 T
< {max E[M (w;)] + max

SESSEARE el

t=1

X ggmi(ﬁz‘) - Mi(ﬁi)\
< [en”+ 0p(D)]or(1) = 0p(1).

It follows that i Zt Vi (wi; Biy 1i(Bi)) = Hiwu(Bi) + 0p(1) uniformly in
i, 1;(Bi) — wi(Bi ) = Op(T™ 1/2) for each i, and max, .-y i (Bi) — wi(B)| =
Op(TV2(InT)*).

(iii) In view of the definition that Y¥;(B;, w;) = E[¢(wi; Bi, wi)l, we
have max, iy |¥i(Bi, i(Bi) — Yi(Bi, wi(Bi))| = max; E|M (w;)|lii(B:) —
wi(B)| = Op(T~*(InT)?).

(iv) We define the following events:

Al = 11’522\(]|1&1(Bl) - M‘l(Bz)| < CH/(6C]1V;q)},

17
A= 1122)1\(/ TX_I: M (wi) — [M(w,,)]} = C}éq/z},
1t
A3 = 11’32;1)]6 T Z[ (w,t, Bl? MI(B )) (wll’ :817 /‘LZ(B ))]‘
== =1
ch/4 s
1t
Ay = {1121311\/ T ZV;M(U);';; Bis mi(B))| = CH/Z}a
== =1
10
As = {113151}/ T ;Vim (wiz; Bi [‘«i(ﬁi)) z CH/4}~
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Let A;’ denote the complement of A4; for j =1,2,3,4,5. Let §; = 1;,(B;) —
wi(B;). By Lemmas S1.4 and S1.2(iii), P(AS) = o(N~!) and P(A4S) = o(N 7).
Then by (S3),

+P(45)
< P(3c}w/" max 18] > cH/2> + P(A5)
< P(AS) + P(A5) = o(N7).
Let I/Z;L’(Bl) = I/if"i(u)i,; ,8,‘, /.L,(Bl)) Notlng that %Zil I/Z;L:(Bl) — %

X
S BV BT+ X Vi (B) —EVE (BT}, minyiey = 3, BV (B)] >
cy by Assumption Al(v), and
> CH/2>

we have P(A4;) = P(minlfiSNl%Zz;l Vi (wis Biy (B = ¢u/2) =1 —
o(N~Y). It follows that

T

1 M M
P(g%’l\(] 7;{% (B) —E[Viz (Bi)]}

=o(N™") byLemma S1.2(iii),

P(As)>P(A;N Ay) >1—P(A5) —P(A5)=1—0o(N7").
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Consequently, we have that by Lemma S1.2(iii),

N - P(max|ia(B) — pi(B)| = T72(n T)**)

-1
:N-P((c—H> max
4 1<i<N

> T 2(nT)*", A5> + N - P(AS)

1 T
- > Vi(wis Bi, Mi(Bi))‘

1
<N P(lrgfg\(] T ZVi(wn; Bi, Mi(,Bi))

+N~P(A§)
=o(l)+o0(1)=0(1).

>cyTV*(In T)3+”/4>

(V) NOtlIlg that |1P(Bla Ill(ﬁ )) - W(Bl? /-Lz(ﬁ ))| < E[M(wlt)]“ll(ﬁ ) -
wi(B)] < e 1iui(Bi) — wi( B:)| by Assumption Al(iv), the result follows directly
from (iv). Q.E.D.

Recall that Si = % ZIT=1 Ui(wit; l’ I(BO)) Let S - T Zt 1 U (wl[? Bz ? /‘Ll

The next lemma studies the asymptotic properties of S;, S;, and their differ-
ence.

LEMMA S1.6: (i) S; = Op(T~'?) and S, — S: = Op(T~'?) for each i,

(i) max;ooy [Si] = Op(T~2(InT)) and maxiey IS, — Sill =
Op(T~'2(InT)?),

(iii) &N, 1817 = 0p(T ),

(iv) max,;<y P(||Si|| = mA;) = o(N ") for any given constant n > 0,

(V) P(max;;<y IS — Sil = CT2(InT)***) = o(N~1) for any v > 0 and
C>0.

PROOF: (i) Let ¢, be an arbitrary p x 1 nonrandom vector with |¢,[| = 1.
Recall that U;, = U;(w;; B?, n?). Note that E(U;,) =0 and

Var(4,S;) ZZCOV Ui, Ul,)

t=1 s=1

2/,,1 L 12/q
ZZZa t—|

t=1 s=1

< 8max{E
it

it
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’ a2/ 1 . 1-2/q __ 1
S ENERATRS SR
by the Davydov inequality (e.g., Corollary A.2 in Hall and Heyde (1980)).
Then S; = % er=1 Ui(wi; BY, u?) = Op(T/?) by the Chebyshev inequality. By
second-order Taylor expansion,

1

T
S,— - S = Z[Ui(wiz§ ,8?, ﬂz(ﬁ?)) - U,-(w,-,; B?’ /J’(z])]
=1

N

[
el
[~

Ut (wis BY, wa(BY)) [12:(BY) — 1a(B))]

t=1

1
+ﬁ Z U™ (wi; BY, fi(BY)) [:(BY) — Mi(B?)]Z,
t=1

where f1;(BY) lies between f;(B8Y) and w;(BY). By Assumption Al, Lemma S1.5,
and the Markov inequality, one can readily show that the first term is Op(T1/?)

and the second is Op(T1). It follows that S; — S; = Op(T~Y2).
(i) By a simple application of Lemma S1.2(i), max;.y ||Si|| =
Op(T72(InT)?). Next,

~ 1 T X
max ||S; — S|l < max ;M(w”)mi(ﬁ?) — ()]
1 T
= {lmaﬁ 7 ;E[an)]

+ max
1<i<N

3>t - o) |

t=1

x max | (B8]) — wi(B87)|

1<i<N
= {0(1) + Op(l)}OP(T_l/z(ln T)3)
= O0p(T"*(InT)%).

(iii) By the Cauchy-Schwarz inequality, + >V 1S:01? < 2 SIS +
% Zﬁil IIS; — S;|I?. The first term is Op(T™1) b}: the Markov inequality and the
calculation in (i). Using the decomposition of S; — S; in (i), we can readily show
that the second term is Op(T"). Then ZL 151> = Op(T™).
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(iv) The result follows by a simple application of Lemma S1.2(ii) and As-
sumption A2.

(v) The proof is similar to that of (ii) but we now apply Lemmas S1.2(iii) and
S1.5(iv). Q.E.D.

The next lemma establishes the uniform consistency of 3;.
LEMMA S1.7: Forany n > 0, we have P(max,;-y || B; — BN >m)=0o(N1).

PROOF: Recall that O\, (B, @) = Qunr(B) + 5 % TR 18 — all,
where Qi nr(B) = ﬁZfll ZtT:1¢’(wit;Bi7lli(Bi)) = %Z,{illjfz‘(ﬁiaﬁ“i(ﬁi))-
Noting that (B, &) = argming.q, Qilfv"}m(ﬁ,a), we have Qillf,OT),M(i%,&) <
QiN7., (B, &) and

Ko

Bi(Bir i(B) + M [ 1B — éuel

k=1

Ko
<8 m(BY) + M [JIB) — | for i=1,...,N.
k=1
Let & = min;[inf, 5 po-, Yi(Bi> i(B:) — Wi(BY, wi(BY))] > 0. Define three
events A; = {maxiioysup,,, |Wi(B,n) — Wi(B, )| < e} and A, =
{max, i<y sup, [Vi(Bi, L(B)) — Wi(Bim(B)) < e} and Ay =
{Aimaxg,.g.cn ]_[fil 1B — arll < ée}. By Lemmas S1.3, S1.5(v), and Assump-
tion A2(i), P(A; N Ay N A3) > 1 — P(AS) — P(A5) — P(A5) =1 — o(N7).
Then conditional on 4; N A, N A3, we have, uniformly in i,

Ky
inf (i (B)) + i [ [ 1B — el

Bi:lBi—B1I>n el
. N 1
> inf 1I’i(Bi,,U«i(ﬁi)) ——e+0
Bl Bi—B0l>n 6
> inf 1[[(3 ,(B,))_lg_lg
e I R FAP 6% 6
0 0 1 1
> W8], wi(BY)) + & — 6% 6°

. 1 1 1
= V(B () —zete—ce—ce
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(B, A(BY)) ~ go—gote— o ge

6° 6 6° 6
Wiy, (BY)) +

II %
L»JI»d

%

A all 1
V(7 () + M [ 1187 = | + G
k=1

On the other hand, ¥(B;, &(B:)) + M 1o, 18 — axll < W(BY, i(BY)) +
A ]_[1,511 | B9 — a || It follows that P(max;<;<y | B:— BYl) > 1) = o(N~"). Q.E.D.

To state and prove the next lemma, we follow Hahn and Newey (2004) and
introduce some notation. Let F; and F; denote the cumulative and empirical
distribution functions of w;,, respectively. Let F;(e) = F; + evVT(F,—F,) foree

[0, T-'2]. For fixed B; and €, let u;(B;, Fi(€)) = argmin,, f Y (-5 Bi, mi) dFi(e),
which is the solution to the estimating equation

(S 0= /  Brs (B, Fi(©))) dFi(e).

Define u?(e) = du;(B:, Fi(€))/3B;. Apparently, F,(0) = F,, F.(T-) = F,,
wi(Bi) = wi(Bi, Fi(0)),
(B = wi(Bi, F(T717?)),
Iwi(B) _ (B, Fi(0)

=u{"(0), and

B IB;
i (B; pi(Bi, Fi(T™'? -
,U«é)glg ) _ 1 (B aBl( )) — Mlﬁl(T—uz)_

We study the properties of u;(B;, F;(€)) and w;"(€) in the next two lemmas.

LEMMA S1.8: (i) P(max;<i<y maXy...r-12 |mi(Bi, Fi(€)) — wi(B)] = m) =
op(N™Y) forany n > 0,

(ii) MaxX; < <N, max | g;—0lI=0(1) |mi(Bi) — ,Uvi(B?” =o(1),
(111) P(max15i5N,max”/3,-_5?\\:0(1) |/~L(Bz) _I-ALz(,B?)| >n)= O(N_l)forany n > 0.

PROOF (1) Let & = mini[infui:mifu,'(ﬁi)bn q:,i(Bh M’l) - 1I’i(Bi, lu’l(Bl))] > 0
Noting that

/¢<-; Bi, ) dFi(€) = (1 — eNT)W( By, i) + e TW(Biy i),
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we have

= evT lei(Bi, wi) — Vi(Bi, Mz‘)|

'/ (-5 Biy mi) dFi(e) — Wi (Bi, i)

= |1j,i(ﬁia wi) — Vi(Bis i)

By Lemma S1.3, we have P[A] = o(N~!),where

28/3}.

A={ max max
0<e<T-1/21<i<N

/ (-5 Bi, wi) dF;(€) — Y (Bi, wi)

Therefore, for every € € [0, T~'/?] and conditional on the event 4, we have

1
inf 53 Bis i) dF;(€) > inf Vi(Bis i) — 3
m:m%(ﬁ,-)bn/w( Bi i) (€) u,-:m,-—l;g(m)\m (B 1) 38

2
> Wi(Bi, mi(Bi) + 3¢
1
> / 1I’i(Bi, Mi(,Bi)) dF;(e) + 3%

On the other hand, we have [¢(:; B, mi(Bi, Fi(€))dFi(e) < [(s
Bi, wi(B:))dF;(e) by the definition of u;(B;, Fi(e)). It follows that
P(max;-;-y maXo_..r-12 |wi(Bi, Fi(€)) — wi(B:)| = m) =o(N).

(ii) Let n > 0 be given. Let & = mini[inf“l_:mﬁmw?)bn Yi(Bi, wi) — V(Y
wi(B))] > 0 and M = max;, E[M (w;)]. Note that max; | [[¢/(-; Bi, wi(B))) —
Y B m(BIIAF;| < Mmax; [|B; — B}Il = o(1), implying that | [T¢(:; B,
wi(B) — ¥ BY, mi(B1dF)| < &/3 when max; || B; — B}l < &/(3M). Then,
for all B; with max ||, — B%|| < &/(3M), we have

inf /l,[/(, Bi, wi) dF; > q’z(B?’ Mz(IB?)) t+e

pili— i (B))1>n
= Wi(Bis mi(BY)) + %s
= [0 BB aF 3
On the other hand, we have [ (- B, mi(B:)dF: < [ (s Bir wi(B)) dF;

by the definition of w;(B;). It follows that max,_;_y maxjs,—g01=o1) ILi(Bi) —
mi(B)1 = o(1).
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(iii) By the triangle inequality,
0:(B) — (u:(B°
max|1,(B;) — fu:(B})]
< g%mi(ﬁz‘) — wi(B)| + ]Igg?/\(/mz(ﬁ?) — mi(BY)|

+ max| () — wi(B7)]-
By Lemma S1.5(iv), P(max, i<y |@:(B:) — mi(B:)| = m/3) = o(N~"). The last
term in the above displayed equation is o(1) uniformly in the set max; || 8; —

Bill = o(1) by (ii). It follows that P(Max, ;. max s, g0 |2 (B) — Li(B) =
1) =o(N™') for any n > 0. Q.E.D.

LEMMA S1.9: (i) P(max<;cy MaX.r-1/2 IIJMi(%ﬁfi(E)) - ﬁ“;f;fi)ll >1n) =
o(N7Y) forany n > 0,

. B mBD
(ii) MAaX; i< N, max | 8;—BI=0(1) I Mﬁﬁil - T” =o(1),

(B _ 9i(BY)
(iil) P(MaX, iy, max ;-0 1=o01) | 55, B

1) =o(N~1) forany n > 0.

PROOF: (i) Differentiating both sides of (S4) with respect to S3; yields

0= / Viﬁi('i Bi Mi(Bia Fi(f))) dFi(e)

. Iwi(Bi, F;
+/V;w('? Bi,Mz‘(Bi’F"(e))) dFi(E)w.

It follows that
(B.. F. /V,ﬁ"('; Bi» i(Bi» Fi(€))) dFi(e)
(SS) /.LlBl(E) = al“’l(ﬁl’ Fl(e)) _ .
/ V(- B (B Fi€))) dF(€)

9P

Noting that [ V;*/(-; B;, wi(B:)) dF; = Hy,,(B:) > ¢y > 0 uniformly in i by As-
sumption A1(v), it suffices to show that

(S6) p ( max max

1<i<N 0<e<T-1/2

/Viﬁi('; Bir 1i(Bir Fi(e)) dFi(e)

- f VP (- Bor a(B0)) dF,

> n/Z) =o(N7"),
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and

(S7) p ( max max

1<i=N 0<e<T-1/2

/ V¥ (- Bis (B Fi(€))) dFi(€)

—/Vim(';ﬁi, Mz(Bz)) dF;

. n/z) — o(N).

By the triangle inequality,

H / VEi(: Bis mi(Bi, Fi(€))) dFi(e) — / VE(s B, m(/si))dF,«‘

=

/ [V (5 B a(Bis Fi(6))) — VE (5 By sa(B))] dF ()

+ H/ I/iﬁi('Q Bi, ,U«i(Bi)) d[Fi(E) - Fi]‘

= H/[V,B’(, Bi, i(Bi, Fi(€))) — V,-Bi(ﬁ Bi, wi(Bi))] dFi(e)

+€ﬁH/ViBi(ﬁ .Bia,Uvi(Bz‘)) d[ﬁi — Fi]

Using Lemma S1.2(iii), we have

P(max max Eﬁ”/V,—Bi(';Bi, Mi(,Bi)) d[ﬁi_Fi]‘

1<i<N 0<e<T-1/2

> n/4>
= o(N7).

In addition, by Lemma S1.8(i),

P ( max max

1<i<N p<e<T-1/2

/[Vf"(-; Bis i(Bi Fi(e)))

—VPi(; By mi(B)) ] dFi(e)

> 17/4>

§P<max M(-)dF;(e) max maxl/2

1<i<N 1<i<N 0<e<T—

Mi(Bi,Fi(G)) — ki(Bi)
> n/4) —o(NY).

Then (S6) follows. Analogously, we can prove (S7).

17
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(i) Recall that

Bl .o . . . .
,QMi(ﬁi) :_/I/l (’Bl’Ml(Bl))dFl.
P ‘/.Vi#i('; Bi, i(B:)) dF;

(S8)

To prove (ii), it suffices to show that

max / VP (s Biv (B)) dF,
1<i<N,max||B;—p; |=0(1)
- [ mlg)ar] =o,
and
max f V(5 Bir i BD) dF,
1<i<N,max | 8;—?l=0(1)
— [Vt Bty ar) o,

We only show the first result, as the proof of the second one is similar. By
Assumption Al(iv) and Lemma S1.8(ii),

max
1<i<N,max | 8;—B?ll=0(1)

- [ V(B ()

< maxE[M (w;)]
it

/ I/iﬁi ('§ Bi, ,U«i(ﬂi)) dF;

X max {HB;‘ - BV + ’Mi(Bi) - Mi(B?) }

1<i<N,max||B;— B |=0(1)

=o0(1).
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(iii) By the triangle inequality,

A N 0
o | 2B BB

l=isN|| - dB; IBi
« max | 7228 om,(B ) H (Bl owmi(BY)
1<i=N|  dB; 122N IBi IBi
+ max | 2B _&m(ﬁ,-) .
l<isN | JIB; B

Noting that P(max;cy || 2882 — 280 > 5/3) = o(N~") by (i) and the last

term in the above displayed equatlon is o(1) uniformly in the set max, 1B —
(B ‘7“1(/3 )

BYll = 0p(1) by (i), we have P(MaX,_; y max,-p0 =01, | 4 g I=n) =
o(N~1) for any n > 0. Q.E.D.
Recall from (A.2) that
Higs(B))
Z[U‘*' i B BB+ U (0 B B0) 2 |

Let Higg(B) = 3 X0 LU (Wit By wi(BD) + U (wics By pi(B1)) 421 Note
that Higs(B;) = E[I:Iiﬁﬁ(ﬂ,-)], where H,gg(-) is defined in Section 2.3. The next
lemma study the asymptotics of H;z5(8;).

LEMMA S1.10: (i) P(malxlsisly ||I:1i/3/3(/§i) - HIBB(B?)” >n)= o(N7).
(i1) cp = min <<y pmin(Higg(B:)) = ey — 0p(1).

PROOF: (i) By the triangle inequality,

max | Higp(B:) — Higs(8Y) |

1<i<N
<1I£113»7A(]||H1B/3(18)_ lﬁﬁ( )”+I£13’§]”H15/3( ) ﬁlﬁﬁ(ﬁ?)“
+1I3§)15HH435(B ) — Higs(B?) |-

We prove (i) by showing that (i1) P(max;;<n ||I-AI,-BB(B,-) — I—AI,-,gB(B?)H >n/3)=
o(N™Y), (i2) P(maxi-y [[Higs(B)) — Higs(BDI = m/3) = o(N7"), and
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(i3) P(maxiiy [|Higs(BY) — Higg(BY)| = m/3) = o(N"). For (i1), we make
the following decomposition:

Higs(B) — Higs(BY)

T
T Z wllv ﬁn /J’z(B )) UBI (wm :B, ’ /‘Ll(B ))]

T
: Iju(B)
qu lt; Mi l ,l
}z;[ ) g
Bif, . @0 A (0 ‘91&1(3?)
- U 8 8 5 |

=Huy;+ Hyy,  say.

For H,y;, we have

(B — (BY)])-

1 ¢ 3
max ||| < max — ;Mw){ 15—

Using the arguments as used in the proof of Lemma S1.5(iv), we can show that

P(max — ZM(w,,) < 2c1/q) =1-0o(N7").

1<z<N

Then, by Lemmas S1.7 and S1.8(iii), we can readily show that
P(max,-;y |[Hi1|l > 1/6) = o(N~1). For H,,;, we make the following decom-
position:

_ 1 : i RN Hi 0 A 0 alai(,éi)
Hy = T Z[U,- (wm Bi» Mi(Bi)) U (wm B ,LL,-(,B,-))] 9B,
=1 i
(s B, (B 9i(B?)

= HlZi,l + lei,z, say.

Following the analysis of H,;; and applying Lemma S1.8(i) and (iii) and
Lemma S1.9(i) and (iii), we can readily show that P(max, -y |[Hsll >
1n/12) = o(N~!) for s =1, 2. Then P(maX1<,<N |H 2l = 1/6) = o(N~'). Con-
sequently, we have P(max, -y [|Higs(B:) — Higg(B) = m/3) = o(N ).
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To prove (i2), we make the following decomposition:
Higp(B7) — Higs (87)

T
ZUﬁ’ (wi: B> (B7)) = U (wa B 1a(BY))]

t=1

| —

T Py
3o o )

07#«1‘(3?) :|
98,

= Ul (wis B, mi(B7))
= Hy; + Hy;.

Following the analysis of max;;<y ||I:IiBB(B,») — I:Iiﬁﬁ(B?)H and using Lem-
mas S1.2, S1.7, S1.8, and S1.9 and Assumption Al, we can show
P(max,_;—y || Haill > 1/6) = o(N~') for s =1, 2. Then (i2) holds.

Next,

= LS 0P (i B () — B[P (s B2 (B

4+l XT:{U{”(u}it; Bl mi(BY)) — E[U (wi: B, i (87))]}

Using Lemma S1.2, we can show P(max;;<y |Hsg| > 1/6) = o(N!) for s =
1, 2. Then (i3) holds. This completes the proof of (i).
(i) By the Weyl inequality and the fact that |um.x(A)| < ||A| for any

symmetric matrix A, we have pmin(Higs(B1) = pmin (Hio(B))) — | Higg(B)) —
lBB(BO) . Then by (i) and Assumptlon Al(v) Cjy = Miny<<y ,umm(H,ﬁB(B )) >
Inln1<1<N Mmm(HlBB(BO)) InaX1<1<N ”HtB/S(,B ) HzBB(BO)” > Cy— OP(l) QED

LEMMA S1.11: Recall that H s = H,g5(B,), where B, lies between B; and B°
elementwise. Then
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(i) P(maxiiey [ Higs — Higg(B) | = m) = o(N ) for any m > 0,
(i) max,<i<n [|Higgll = Op(1).

PROOF: (i) The proof is identical to that of Lemma S1.10(i) with B; replaced

by B..
(ii) By (i) and the triangle inequality,

max || Hgg|| < max | Higs(B]) | + max [ Higs — Higs (B7) |

1<i<N 1<i<N 1<i<N

=0(1) + 0p(1) = Op(1). Q.E.D.

Recall that Uy, = U(wy; BY, wd), Uly' = U (wi; BY, wi), UL™ = U™ (wy;

it

¢, u), and similarly for ¥, and V}". Recall that m;; = ST EWUR, my =
%ZfﬂE(V“"), My = + L BAUEH), mys = 33 BV, and Uy, =
U, — V,, The next two lemmas are essential to establish the asymptotic
dlstrlbutlon of the C-Lasso and post-Lasso estimators.

LEMMA S1.12: Let S = ﬁ Y et v Uiwis @), fui(e)). Then S +
k
Buvr — N (0, 24).

PROOF: Let Sag = ﬁ Zier ZL U;(wi; @), fi(al)). Using the fact that
ieG)=1{ie GY+1{ie G\ G —1{i € G\ G}, we have

Sék - SGQ =

\/T Z ZU wzt’ak,Mz ak))

ieG\GY =1

\/— Z ZU wy; o, L ak))

zeGO\G =1
= Sk,l — Sk,27 say.

Let € > 0 be an arbitrary constant. By Theorem 2.2, P(||Sk > €) < P(Fenr)—
0, and P(||Sk o >€) < P(EkNT) — 0. Thus SG = SGo + oP(l) and it suffices

to prove the lemma by showing that (i) SG(,J + Binr = «/ﬁ ZEG% ST U+
k k
or(1), and (ii) —7=Y..qy YL Uy 2 N, ).
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. o T
Part (i): We prove SG‘; + Binr = \/ﬁ Ziecg >, Ui + op(1). By second-

order Taylor expansion,

(S9) SGo=mZZ J—ZZU“’ -]

Gl)tl GOtl

zﬁfZZWM%%MMM)MZ

Gﬂtl

=81+ Sk2+ Sks,  say,

where u! lies between fi;(a)) and u?. We will show that S, contributes
to the asymptotic variance of cha Sk.; contributes to the asymptotic bias,
and S;, contributes to both. We analyze S5 first. Let S, = —*

—— x

24/ N T
Diect ST UM fi(ad) — w2, By Assumption Al, the Markov inequality,
and Lemma S1.5(ii), we have

||Sk,3—52,3|| ZWZZHUMM Wi o, W )

GO[]

— U™ (wy; o, 1|

[f1(a) = T

7 X [VT )
k zeGU =1
= Op(1)y/NTOp(T*(InT)°)
=O0p(N*T7'(InT)°) = 0p(1).
By (S1) in the proof of Lemma S1.5,
1 o ’
=2 Vi
F‘l”‘l =1
k’3 VN" %2 v K 0 ~ (0
T Z Vv, (wit; a, Mi(ak))

As in the analysis of S, 3 — S} ;, by Lemmas S1.5(ii) and S1.2(i) and the fact
that max;_;-y |+ Z[T:I Vil = Op(T~"*(InT)?), we can readily show that S} ; =
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SO, + Op(N,*T~'(InT)°) = SY; + 0p(1), where

1 7
=2 Vi
ZZ o
2\/Nk ieG) 1=1 %ZE[VUM]
=1
2

N2
MTZ Moy (IZVU) +0p(N"T"'(In T)’),

eGO

where we also use the fact that max,_.y ||%ZtT_1 Ut — myn| =
Op(T7"2(InT)*) by Lemma S1.2(i). Thus, we have

(S10)  Sis=

J_Z ,Uzm,y<f2%,> +op(1).

Now, we study Sk.2. By Lemma S1.5(ii), (S1) in its proof, and the fact that

max; i<y |+ Y, Vil = Op(T~"2(InT)*) and max; oy |23, Vi —

myy| =
Op(TV*(InT)?), we have

2
=———— 4+ 0p(T"'(InT)")
2

=—my) T Vn 4+ Op(T™'(InT)°) uniformly in i € G}.

But the above expansion is not sufficient to study S , and we need to get better
control on the remainder term. Noting that ;(8)) = argmin,,, ]7 ZZT L Y (wys
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B} 1), we have
10
= T Z Vi(wit§ B?, I-L(B?))
=1
1T
== ZI/,», ZV“‘ — mi(B)]
1 d /“’l/““l 0\12
_TZ wzt :8,7/~Lt(ﬁ ))[MI(B ) l“l‘i(ﬁ[)] 5

where f1,(B8Y) lies between fi;(B8?) and w,;(B?) for each i. It follows that
(S11)  Ai(BY) — m(BY)

1 -1 1
_ - Vl_,ui - v,
R

t

=1
1 T
o SV s )~ )T

t=1

z_[;i } { Yt gy Yl (B?)—Mi(B?)]z}

=1
+0P( “(InT) )

T

T -1 2
. %ZVJ"' —ZVH+ m:J;ZV“""“"(%ZW)}

t=1 t=1

+ Op(T(InT)’)

1< 1 < ’
=— T;Viﬁf —Zv,,+ ~myimay, (72;1/) }
+0p(T(InT)°),

where we use the fact maxi_ioy | 3, (V" (wi; Bi, i(BY) — Vil <
max, <<y 7 g LS M(wy) x max;zioy |(BY) — (B = Op(T~*(InT)*) and
max, <<y |7 ST VER —my,| = Op(T~2(In T)*) by Lemma S1.2(i). It follows
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that

1<
$12)  Sem _§; {[T;V,—ﬁ’”}

1 « 1 ’
X{T;I/it—'—imﬂ/zmiVZ( 2:1: )}+OPT (lnT))}

= —Sk21 — Sk +op(1).

For S »1, we make the following decomposition:

G(]z’_l ierr:l
I B
VNT [ 5= o ¢ wo T

i€GY, _Zl/itl

T

= Sk.21a + Sk216 + Sk 21 + Sk 214-
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N, T3
we can use the fact that max15i§N|%Z[T:1 Vil = Op(T-2(InT)%) and
max;;_y |+ 7 Z, Vit = my| = Op(T~"*(InT)?) to show that

Apparently, Seaip = 7= Yieop Myt Lo Ly Vi Ui = E(UL). For Sy,

T
! Z(I/lf - le)
Sk,ZIC — \/— Z Z I/,,m,U =1 . P

0 t=1 .
<Gk miV7§ Vi

t=1

\/WZ ’U’”zVZZVn Vit —mw) + op(1).

i€GY s=1 t=1
It follows that
T T
(S14) S + Sk = 52 P YD ViU + op(D),
N, T? ieGY =1 s=1
where we use the definition of Ui'(= U}’ — “XV*) and the fact that

E[U%'] = 0. For S 214, we can bound it directly:

(S15) [Sk,21a] <V NkT max

= VN TOp(T*(InT)’) = 0p(1).

Combining (S13)—(S15) yields

S16) i = ”’"IU
S10 Si= Y3

zeGO t=1

T T
\/ﬁ Z m ZZ%UZ" +op(1).
k

IEGU t=1 s=1
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In addition, for Sy », we have

(S17) sk,zz_zmz( ZU )mwm,m<ﬁ2n)

T
i i Y — V;t + 1
2\/WZ Um,VmV( TZ ) op(1)

IGGU

Combining (S12)—(S17) yields

T
- My
(S18)  Sin= \/JT > ZV »

zeGO =1 ;

A HE

EGO t=1 s=1

T 2
2\/Wzmlum,vmzvz<72 ) }+0P(1)-

Then by (S9), (510), and (S18),

SG°=WZZ< eV )

GOtl
T T
Vi
1 <« ’
| %
2\/Nk Z [ mlva]<ﬁ; t)}
+o0p(1)

\/N— Z ZUU Binr 4+ 0p(1).
T

zeGO =1

This completes the proof of (i).
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Part (ii): We prove Zyr = \/N_ZzeGO Zl Uy 2 N, 02)). Let Z; =
k
ﬁztil L’pUi,, where ¢, is an arbitrary p x 1 nonrandom vector with

llepll =1. Then ¢/ Zyr = Ziecg Z;r. Noting that E(U;,) = 0, we have, by As-
sumption A3(i),

Var(Zyr) = —— Z ZZE (U.U,) ZQ,T — 0, >0,

IGGU t=1 s=1 zeGU

where Qi = L3 "1 E(U,U,). By the Lindeberg-Feller central limit the-
orem (e.g., Theorem 5.6 in White (2001)), it suffices to verify the Lindeberg
condition:

SNT—ZIE 1{|Zir| > €}] - 0 for any given & > 0.

lEGO

By the Cauchy-Schwarz and Markov inequalities,

ZE 1|1 Zir| > &}] < Z{E(Z?T)}l/Z{P“ZiH > 3)}1/2

ieGY ieGY

By straightforward moment conditions and properties of strong mixing pro-
cesses, we can readily show that

T 4
E(Z}) = % (Z L’I]U,-t) =O(N;?) uniformly in i.
Nk T t=1

It follows that Sy;r — 0 for any & > 0 and Zyr = ﬁ ZieG2 Z; Uy 2
N0, £2,). Q.E.D.

REMARK: Note that U;(w;; B;, w:) = Ui (wi; Biy i) — %Vi(wn; Bi, w;) and
U;, correspond to U;(x;; 6,7v;) and U, in Hahn and Kuersteiner (2011,
HK hereafter), respectively. Let U and U/ denote the first and second
derivatives of U, with respect to w;. Let U}’ = U (wy; B, u?) and UL* =
U™ (wy,; BY, w?). Following HK, the asymptotic bias term of Sék takes the
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form

mz{ WfZV”Mi@(U“mm ﬂ

where m;;, = + I E(U%*). Note that

ij}{’(T /—N T3 Zm ZZI/MUP:!

lEGO s=1 t=1

1 < ’
2\/Nk Z wm (ﬁX_;V')

_ mHK HK
=Binr — szNT’ say.

Let Byyr and By be as defined in Theorem 2.4. Apparently, B, = Byt
NOting that Mivz = ]7 ZIT=1 E(Ugim - %Vi#im) = Myx — %mn/z with My, =
13 E(UL™), we have

T 2
m;
]BZcI]{VT \/W Z m;V ( My — m (: 1V2> ( Z: ) = BQkNT.

ECO

It follows that BYX,. = Byz.

LEMMA S1.13: Let Hyy = 57 Y6, Tt [UP (wis &, (@) + U (wys
&, ,&,—(&k))%f:k)] and &y lying between & and o) elementwise. Then I:I(k) =
Hynr + op(vyr), where vy = min(1, \/W).

PROOF: As in the proof of Lemma S1.12, we can readily show that
Hy, = I:IG2 + o0p(1), where PAIGQ = ﬁziecg S UF (s éu, fui(an)) +
Ul (wi; &, ,fbi(&k))%‘i“]. For 1:ng , we make the following decomposition:

1
fio =57 3 Z[Ua, i ) i)

1560 =1

Ip (g )}

+ Ul (wie; o, pi() e
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T

1 : e Ao ay

+ N.T Z Z[U{B' (wirs @, i) — U (wies o, mi(@))]
ieGg t=1
1 L [ . Ipi(ay)
T U (wirs @, i) ——=
. . I
— UM (wis &, (@) ’;;“k)}
k

= HGQ,l +HG‘,1,2 +H62,3'

Using the arguments in the proof of Lemma S1.10, we can readily show that
H Gls=0 p(vyr) for s =2, 3. In addition, by the Chebyshev inequality we can
show that Hgo = EGQ,I +o0p(vnr), Where EG2,1 = E[ﬁcgﬂ- Then by (S5) with
e=0,

ZZE[U& wi: o ()

0
Gk)l Nk zeGO =1
. I (ao)
U7 sl () o |
1t
1 T T 7 2B
Bi i t=1
=7 > > E|Uf UL o }
iec) =1 L '
_ > XT: [y M| L > ZT:E[IUB‘]
Nk 113 113 NkT it
ieG) =1 = ieGl 1=1
= Hinr
It follows that I:I(k) = HkNT + OP(VNT)- QED

REMARK: When {U;,, ¢ > 1} are serially uncorrelated, we have

Qk (NA T)ﬁoo Nk Z QIT (Ng, 'T)%oo Ny Z ZE ”U/

IGGO zeGU
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When the likelihood function is correctly specified, we can apply the second
Bartlett identity (i.e., the information matrix equality) to obtain

T
%ZE U, U, ZE [U£],
t=1

N[ =
]
=
N

T
%ZE[U,-,V,-[] =- ZE (U] =—mw =~
t=1

1 & 1< .
TZE[I/UZ] = T ZE[V:’] =—My,
=1

t=1

when i € GY. Then

1 « /
- > E(U.U,)
t=1
1 < m; m !
Al )
T ; < ' 14 ' ' 114 '
1 & myym _m
/ iu iU 34/
=7§E_U,-tui, 3 UiV = = ULV, }
1 iE' U miym miym myym
T - L ! my miy miy
1 T m
=—— E|Uf — Ly ke,
NkT X; Z |: m;y "
ieG) =1
It follows that
0, = E U U
k (Nk T)HOO Nk Z Z

lEGO

LEMMA S1.14: Suppose the conditions in Theorem 2.6 hold. Recall that
52 _ 2 K T Py 5 (G 2
6k — NT Dokt Zieék(K Al)Zt V(Wi ag, gagys LiQG, kap))- Let o =

2 N T . ~2 —2 -
NT Zi:l Z[:l l/’(wit’ i Ml) Then maXK0<K<Kmdx |0-G(K,/\1) - O-G(ll = OP(T 1)'
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PROOF: When K > K|, following the proof of Theorem 2.1, we can show
that || 8; — Bl = Op(T ">+ \y) for each i, and

1 N oK 0 ~ Nl ~ NKO : A 0
NZH”B _ak Nl_[a N Hak_aKo“
i=1 k=1 k=1 k=1
= 0p(T7).
Then by Assumption A1(vii), [Tr_, [lax — a¥l = Op(T~"?) for I =1, ..., K,. It
follows that the collection C = {ay, k =1, ..., K} contains at least Ko dlstlnct
vectors, say, &, ..., Gk, possibly after relabelmg the vectors, such that

K
o — | [T la—al| =0n(T7) for k=1,...,K,

1=Ky+1

As before, we classify i € Gk(K, Ay) if ||éi —ai]l=0for k=1,...,K, and
i€ GO(K, A1) otherwise. Suppose that i € Gk(K, M) for ke {Ky+1,..., K}
Then by the pointwise consistency of 3;, we know that the probability limit of
&, must be given by one of the columns in a’ = (¢!, ..., a‘}<0) and it converges
in probability to the true value at the rate 7-/? + A,. Apparently, if C contains
n; elements with probability limit given by &, we can derive that ||&; — a}| =
Op(min(T-YCw T-12 4 \))) for k =1, ..., Ky,. Without loss of generality,
assume that if n, > 1 for k € {1, ..., K}, Gk(K, A1) contains the maximum
number of elements among the subsets GI(K , A1) with plim( N.T)>00 & =af.
Using arguments like those in the proof of Theorem 2.2, we can show that

(S19) Y P(Ewr)=o(1) for k=1,...,K, and

ier
> P =o(1) for k=1,...,Ky.
ieGr(K,Ap)

The first part implies that ZLP(i e Go(K, \)) U (A}KUH(K, A) U -+ U
Gk(K, )\1)) =o(1).
Let (p,,(k) =2y (wy; a aGk(K ap (K Ab), ,u,(aG, «. ap))- Using the fact that 1{i €

G =1{ie G} +1{i e G, \ G°} — 1{i € G° \ G}, we have

A 1 X T
o-é(K,Al):ﬁZ Z Zl//it(k)=D1NT+DzNT—D3NT+D4NT,

k=1 jeG(K,Ap) =1
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where

Ky T
Diyr = % D3N k),

k=1 jeg0 t=1
zeGk

DW——Z > Zl//l,(k),

k=1 ieG (K, mN\GY =1

1 & L.
D3NT=WZ Z Ztﬁi,(k), and

k=1 jeGN\G (KA 1=

bk £ Y Y

k =Ko+1icGy (K, A =1

Let 8yr = min(~/NT,T). By (S19), we have that for any e > 0,
P(Dynr = 57\/276) < Zﬁ)lp(ﬁkNT) — 0, P(Dsnr = 519276) < Z,@lP(EkNT) — 0,
and P(Dyyr > 833€) <Y N P(i e Uk, +1<e<x G, (K, \;)) — 0. It follows that
&ém,)\l) = Diyr + 0p(835) for all Ky < K < Koy

Following the proof of Theorem 2.5, we can show that &g  ,,, — ) =

Op(83%) for k =1,..., K,. Then by Taylor expansion, we can readily show
that

2 Ky T A o
Dinr = ﬁ Z Z Z ‘p(wit; aék<1<,,\])(K, A, Mi(a(”;k(K,Al)))

=1 ;0 t=1
k ieGy

VYN s ()

k=1 iEGg t=1

o) Ko T . .
N 2o 2 2 Ui () [ ) — ]

k=1 iEG2 t=1

L?[l,‘ ao N
Z Z Z V Wi, ak, ,u, )) &c(vkk) [ac";k<1<,/\1) - 012]

k 116G0 t=1
+0p(8y7)
= Dinr1 +Dinro+Dinrs + OP(S;]ZT).
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By Lemma S1.12 and the fact that B, = Op((N/T)"?), we can show that
DINT,Z = OP(SX,ZT) Let

Ko

lNT3: —ZZZV wll?“k’l"Ll ak))alv;ik )

k= l,eGOII

Then

1 M api(BY) 5ui([3?)
+WZZVH< IBi B; )
N I~ 0
i A 0 0 ﬁ/v‘*i(ak) .
+WZZVH (Mi(ﬁi)_ﬂi)W+0p(T )

= Diyrsi +Dinro + Dinrss + OP(Tfl)-

By the Chebyshev and Davydov inequalities, we can readily show that D73 =
Op((NT)™'?). By (S5),

7)o (BY)

(S20)
IBi IB;
_ ami(BY, Fi(T™%)) B (B!, Fi(0))
B IBi IBi

[recstuan, [ v iena
/Vi’”(ﬁ P> ui) dF; /Vi’”('; ! i(BY)) dF,

i Ny NyMyy — Ry Ny

m;y m;y miymjy

ny (B —my ) + (niy — Ny Ymyy
My Ay

2

where ny = [V (; 8], w) dFi, huy = (VP B, (B dE, iy = [V (-
9, (B ) dFE,, and recall m, = SV BY, w?)dF;. Then by (S11) and
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Lemma S1.2(i), we can show that

o 1 N7 A
Dinrz= W Z Z I/itmi_[/zniV(miV — myy)

i=1 t=1

[ NI A
“NT Z Z I/itmi_[/l(niV —ny) + OP(‘S;]lT

i=1 t=1

1 N
N Z(ﬁ%v - miV)2
i=1

|1 ¢ ’
= N { T [V,-M (an B?, ﬁ«z(B?)) - miV] }

2 X1 L R
=< N Z{T Z[Vl_m(wi,; B, i(BY)) — Vf']}
i=1 T=1
r M1 2
+NZ TZ(V:l _miy)}
i=1 T=1
= OP(T‘l) + OP(T_l) _ OP(T_1)7

and similarly + SN (A — nay)?> = Op(T"). Then
L 25172
IDinrs2ll < { ZHm,Vn:V ” (T ;I/it) }
- 12
X N ;(VhiV - miV)z}
N L 2,172
=) Vi
Awz(rr) |

N 1/2
X NZ; |n1V_ntV” }

+0p(8y7)
Op(T™") +Op(T™") + Op(8y7) = Or(8y,

7):
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For BWT,%, using (S11), (S20), and Lemma S1.2(i), we can readily show that

Iwi(al
1NT33——ZZVM i i) M(ak) +OP(5X/]T)

Ja
i=1 =1 k

Zivf"“ On(o3))

i=1 t=1

=O0p((NT)™'?) + 0p(85}) = Op(83})-

Then EINT,I% = 0P(8;/1T) and DlNT,3 = OP(SXJZT)

By Taylor expansion,

D1NT1—0'(~0 ZZQB wm,B,,M ))—(TGo

i=1 t=1

ZZV wics B i) [£(B7) — w]

i
i=1 t=1

2 LKL
+ ﬁ ZZI/[M‘ (wit; ,B?, ,41,(,8?)) [laz(,B?) . I«L?]Z

i=1 t=1

= Dint,11 + Dinr 12

Using (S11), we can readily show that Diyr1 = OP(T*) and Diyr1n =

Op(T™"). Then Diyr =g +Op(T"). It follows that 67, —T o= Op(T™)
for each Ky < K < Kax. O.E.D.

S2. BIAS CORRECTION IN LINEAR PANEL DATA MODELS
S2.1. Bias Correction for the PPL C-Lasso Estimator

For the linear models considered in Section 2.6, the bias of the Lasso and
post-Lasso estimator takes the form

-1 -1
kaT = HkNTBkNT = ]H[kNTBlkNTy

where Hivr = 57 Yo X Ellve — EGD)Ix — E(®)1) and Bivr =

1 T T — A A A~ I
_Ni/2T3/2 Zi662 Zs:l Zt=1 eulxis —E(x:)]. Let &; = Yit — x;-ta(";k — M and M=
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+ S - xyag ) forallie G > We propose to estimate byyz by
binr = H;;\/TBlkNT,

T _ 1 T ~ =~
where HkNT = m Zisf}k Zt:l XitX and

R 1 T T A
Binr = —W Z ZZkMT(ta $)XisEir.

ieG, s=1 1=1
Here ky, (2, 5) = kOMT(|t —s|) and kgh(u) denotes the Bartlett kernel:
Kir, ) = (1= [ul/M7)1{|u| < M7}

Dynamic misspecification is permitted here. If the model is dynamically cor-
rectly specified in the sense that E(g;|F;,—1) =0 where F;,_ 1 = o (U1, Ui,
«eo3 Xit, Xii—1, . . .), a one-sided kernel can be used with k., (¢, 5) = kzle(S — 1),
where

Kl () = (1— u/Mp)1{0 < u < My).

Other choices of kernels are possible. So the bias-corrected PLS C-Lasso esti-
mator is given by

1
VNT
Similarly, we can obtain the bias-corrected estimator for the post-Lasso esti-
mator &g, .

Let x; = (Xi,..., %) and & = (&, ..., &1). Let || All, = {E||A|*}"/* for

any a > 1. Let C denote a generic positive constant that does not depend on N
and T. We add the following assumption.

~ () N

=_1 &
C(k =i — HkNT]BlkNT'

ASSUMPTION D1: (i) Foreachi=1,...,N, {(xiy, ;) : t=1,2,...} is strong
mixing with mixing coefficients {c;(-)} such that o;(1) < c,;p" for some c,; <
ooand p € (0, 1). Nik 3o V= 0(1).

ieGY Cai
(i) (x;, &;) are independent across i € GY, where k =1, ..., K,.
(iil) max;,; E|lx;||* < C < oo and max;, E| &;||* < C < oo for some q > 1.

2Observing that & — o = Op((N,T)™"? + T~!) and &g, — o) = Op((NT)™V2 + T71), one
can use either estimator in the definition of the residuals. We recommend using the post-Lasso
estimator &, because of its better finite-sample performance.
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(iv) As (N,T) - oo, My — oo, M2/T — 0, M2N,/T?> — 0, and
2g—1
NPTV Y, o ao(Mp) 5 — 0 foreach k=1, K.

Assumption D1(i) assumes the usual mixing condition. Assumption D1(ii)
assumes cross-sectional independence to simplify the proof which can be re-
laxed at the cost of lengthy arguments. Assumption D1(iii) assumes moment
conditions. The last condition in Assumption D1(iv) can be easily ensured
under Assumption D1(i) because for any My > — In(N'2T'?) (e.g.,

(2q l)lnq
M7 = (In(N'2T"?))'*¢ for some € > 0), we have
1212 24-1)/(2
N.'’T / Zai(MT)( q-1)/(2q)
ieG2
< Z C(Zf] 1)/(2(1)> 1/2T1/2 M7(29-1)/(2q)
lEGO

2g - 1M
=0(1) exp(ln(N,i/sz) + % 1Ilp> — 0.

The first three requirements in Assumption D1(iv) can be easily satisfied, too.
For example, if N; oc T* for some a < 3, it suffices to set My oc T'? for some
b > max{2,2/(3—a)}.

PROPOSITION S2.1: Suppose Assumption D1 holds. Then ]/I-\]I,j]{,TI@%MNT —
H;Q]\/TBlkNT =op(1).

APROOF: Notlng that ﬁ;j{[TI@IkNT HkNTBlkNT = (HkNT — HZI)BlkNT +
(H/:i/T - H/Z]{]T)(BlkNT — Bunr) + HkNT(BlkNT —ABUcNT), H/:NT = 0(1), and
Bixnr = Op(y/Ni/T), it suffices to show that (i) Hyyr — Hyyr = 0p(vyr) and

(11) BlkNT — ]BlkNT = Op(llWhere UNT = min(l, \/ T/Nk).
We first prove (i). Let Hyyr = ﬁ ZieG‘,ﬁ Z,TZI X;x',. It suffices to show that

(11) ﬁkNT — ﬁkNT = OP(VNT) and (12) ﬁkNT — HkNT = OP(VNT)- Note that

~ o~y : : j :
lt it
Nk lt

HkNT - HkNT -

zeGk =1 ieGY =1
T
LA
(z DDREFRLS 3 iRd
ieGy zeGO =1 k GU t=1

=Hy 1+ Hyp.
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By Corollary 2.3, we can readily show that H , = Op(Nk_l) = 0p(vnr). For any
€ > 0, we have by the proof of Theorem 2.2, P(||Hy 1|l > vyr€) < P(FkNT) +
P(EkNT) = 0(1) It follows that HkNT — EkNT = OP(VNT). NOW,

_ 1 a :
Hynr — Hgnr = N.T Z Z{xiﬂ?;t - E{[x,», - ]E(fi»)][xit - E(fﬁ)] }}
i662 =1
1 T
= N.T le%; ; [xil - ]E(xi-)][xit - E(xi-)]

—E{[xi — E@)][x: — Ex)]'}

1 L B ~
+m3§323%%r{m—Eu»Mw—wmnﬂ

: 0 t=1
ieGy

= Hk,3 + Hk,4.

Let w; and w, be arbitrary nonrandom p x 1 vectors such that |w;| =
|lw,|| = 1. By Assumption D1(i)-(ii) and the Davydov inequality, we can read-
ily show that

E[(w/lHk’3w2)2] = Var(w/lHkﬁ (1)2)

T T
= ﬁ Z ZZE(§1,iz§1,is) =O((N:T)™),

0 =1 s=1
ieGy §

where £, ;, = wi[x; —E@X)xy —E&)] = E{lx; —E&@)]x; —E&)] w,. It
follows that H; ; = Op((N,T)~'/?). Note that

1 g oy
w/lHsz = ﬁ Z Z w;xit[E(xi.) — x,:] [OF)
k

: 0 (=1
ieGy

| T T
- B Y

icgV t=1 t=1
lEGk
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where {5 ;s = o|[x; — E(x;)]1[x;; — E(x;5)] ;. By Assumption D1(i)-(ii) and
Lemma A.2(ii) in Gao (2007), we have

E[(w’lHksz)z] = Var(w/lHk 4(1)2)

g

iEGO t=1 s=1

It follows that H,; = OP(N,;]/ZT*). Consequently, Hyyr — Hynr =
Op((N T) ') = 0p(vnr). This completes the proof of (i).
We now prove (ii). Let

Biinr = EBunr) = 1/2T3/2 Z Z ZE(é‘uxm)

ZEG(Jsltl

We prove (ll) by ShOWing that (lll) ]BlkNT — ElkNT = Op(l), and (112) ElkNT —
Bynr = 0p(1). For (iil), we have

a)' (Bixnr — E1kNT)

N1/2T3/2 ZZZ“H it x,s E(x: )] E(Stt-xm)}

,EGﬂsltl

1/2T3/2 Z ZZZ@ its»

ieGY s=1 1=1

where {3 ;s = wi{ei[x;; — E(X;)] — E(&;x;5)}. Then by Assumption D1(i)—(ii)
and the Cauchy-Schwarz inequality,

E[w/l (Bunr — E11<NT)]2

T T 2
:Var( 1(]BlkNT_]BlkNT) 3 ZE(ZZ§3 m)
2

s=1 t=1

2 T T
= 3 E Z Z w' & [xis - ]E(fz‘»)]
NkT ieGY
k

T T 2
NkT3 Z(ZZ‘”EE(&:%;)) .

iey \s=1 1=1
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For the first term, we can apply Lemma A.2(ii) in Gao (2007) and show that it
is O(T~"). For the second term, we can apply the Davydov inequality directly
to show that it is bounded from above by

2 ’
NI (8T||si,||4q||w1x,.s;

icGO
1eGk

T
. Z al_(s)@q—l)/(Zq)) =0(T™).

s=1

It follows that Bixnr — By = O(T2) = 0p(1).
We now show (ii2). We first make the following decomposition:

Buvr — Buwr = 1/2T3/2 Z Z Z ki (2, 8)Xis&i

leG,rltl

1/2 T3/2 Z Z ZE(&‘”X”)

,€G031t1

- 1/2 T3 ZZZkMI(t $)XisEir

leG(lsltl

1/2 T3 Z Z ZE(%X”) +o0p(1)

lecosltl

= N“zT?’/z > ZZkMT(t $)Xis (i — &i1)

,Ecosltl

1/2T3/2 ZZZkMT(t S) Xis€ir — ]E(xlsgzt)]

ZEG(Jsltl

N; 12

1/2
+ T3/2 ZZZkMT(t S)E(xtsszt)

,€G0s1t1

T
1/2 3/2 ZZZ 1 _kMT(t S) ]E’(xlssn‘)

ieGY s=1 =1
+o0p(1)
= ékNT,] + ékNT,Z + BkNT,a + EkNT,zt +op(1),
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where the op(1) term arises due to the replacement of Gk by G{ and this can
be easily justified by using the uniform classification consistency result and ar-
guments as used in the proof of Theorem 2.5. We prove (ii) by demonstrating
that Byyr., = 0p(1) for s=1,2, 3, and 4.

We first study BkNT,l. Noting that &; = y; — x;z&ék — ;= yi — xQ,&Gk -
%Zle(y,«t — X&) and y, = xj,a) + w; + &, for i € G}, we have that, for
ieGY,

N ;A ;A ~/ 0 N —
e T > (v — Xibig, ) — & = %, (o) — &g, ) — &0

where , = 1 3" &;. Then

BkNT,l 1/2T3/2 Z Z Z ke, (2, S)x,sx”( &Gk)

zeGO s=1 t=1

N1/2T3/2 Z Z Z kMT(t S)xtsgz

ieGY s=1 1=1

= BkNT,l(l) - BkNT,l(z), say.

In view of the fact that & — ) = Op((N,T) "2+ T7") and Ne = N, (1+
op(1)), we have

||BkNT1(1)|| 1/2T3/2 ZZZkM,(t $)x5X., (o) &Gk)
ieGY) s=1 =1
N T'?
—r |l | == 5
N]:/z Gk N T2 le% " ;MT t

=N T0p (N T)™* + T7')Op(M7/ T)
= Op(L+ N’ T O0p(M7/T) = 0p(1),

where we use the fact that 57 3 o0 X, 1XisX), ]l = Op(M7/T) by

moment calculation and the Markov inequality. Let Byyr.1(2) = W

T T — .
Ziecg Do 2o ko (8, 8)w'x €, where w is any p x 1 nonrandom vector such

X



44 L.SU, Z. SHI, AND P. C. B. PHILLIPS
that ||w|| = 1. Then by Assumption D1(i), (iii), and (iv),

|E[BkNT1(2) 1/2T5/2 Z ZZZkMT(t $)|E(w x,ss,,)‘

legﬂsltlr_

N'/2T5/2 > ZZZkMT(t 5)

er]sltlrl

(2q-1)/(2q)
X ||wxn’ |8n ||4qal(|r_ |)
1/2
CN - c(2qfl>/(2q)
- T3/2 Nk a,i
ieGY

1
= |r—s1(2q—1)/(2q)
x { D }

t,s,r: [s—t| <Mt

= N;/ZT—3/20(1)0(MT) — O(MTN]:/2T—3/2) — 0(1)

Similarly, by Assumption D1(i)—(iv),

Var(Biyr,1(2)) = N TS ZVar(ZZZkMT(t S)w x,,a,r>

lEGO s=1 t=1 r=1

= NkT = [(ZZZkMT(t s)w x,ss,r> }

s=1 t=1 r=1
=N TS E E ky, (11, 1)
k ieGY 1=ty (6=<T
/ /
X kMT(t4, 15)E (@' X, ity @' Xirg €iry)

= NkTS Z Z |E(w’xit28i,3 w’x,—tsgité)‘

ieGY I=t1,t3,..,16=T
|ti—t|=Mr, |l4 t5|<Mr

=0(M3;/T)=o0(1).

Consequently, EkNT,l(Z) = o0p(1). This, in conjunction with Corollary 2.3, im-
plies that Biyr.1(2) = 0p(1) as w is arbitrary. Thus we have shown that Byyr1 =
Op(l).
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For BkNT,Z, note that BkNT,Z = EkNT’zNi/z/Ni/z = EkNT,Z(l + Op(l)), where
Bint2 = =57 Yoiec) Sovt Sort Ky (1, 9)[Xis&i — E(xisei0)]. By construction,
k

E(Biyr.2) = 0. By Assumption D1(ii)—(iii) and the Jensen inequality,

Var(w/EkNT,z)

N T3 Zvar[ZZkMT(t s)a) [xzsgtt E(xzsAgzt)]:|

teGO s=1 =1

= N T* ZZZZZkMT(f )k, (r, DE(0'x 5885 X 0)

lEGOYItlr—lll

=N SY XY [Emesio)

ieGY Is—1|=MT |r=l|<M7

=0(M3;/T) = o(1),

where the last equality follows from the fact that |E(w'x;eie,x50)| <
max;, || x;&; 13 < max;, [|x;||? x max;, ||e;||3 < C < oo by Assump‘uon D1(iii).
Then BkNT » = op(1) by the Chebyshev inequality and thus BkNT »=o0p(1).

By Corollary 2.3 and the Davydov inequality,

N -8
T3/2(N 1/2_|_N 1/2

| Binrsll =

> Z ZkMTu HE(xisi)

ieGY s=1 t=1

INi — Nyl { }
S < ]E(xzvgz )
TR R e 2, I, )

= 0p(NPT7%)0(1) = 0p(1).

By Assumption D1(i)—(iv) and the Davydov inequality,

T
1Binrall = WTW > ZZ [1— ks, (2, ) |Exisir)

eGO s=1 t=1

= H 12732 ZZZ 1 _kMT(t s) E(xisi)

ieGY s=1 =1
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(2q—1)/(2q)
N1/2T3/ZZ Z a, 1xisllaq 1€t llag

eGn |s—t|>Mt
< CN; T2y S ay(Mp) P00 = o(1),
ieGg

This completes the proof of the proposition. Q.E.D.

With the above result in hand, we can readily show that

VNI (& — ) = [VNT (é — o) — Hyyr Buiovr]
+ (Ne/ NV [y Brnr — oy Buvr]
+[1 = (Ne/No) T H G, Bt
= [VNT (& — &) — Hyyr Buwr |
+0p(1) + 0p(N)O((Nk/ T)'?)
= [VNT (& — @) — gy Buiwr ] + 0p(1).

That is, VN, T (&} (© _ a?) has the desired limiting distribution centered on the
origin.

S2.2. Bias Correction for the PGMM C-Lasso Estimator

Bias correction for the PGMM C-Lasso estimator in dynamic panel data
models can be done analogously. For simplicity, we focus on the case where
Winr = 1, for all i. Recall from Theorem 3.4 and the remark regarding As-
sumption B3(iii) (see (3.3) in particular) that

VN T (k—ak) A BkNT

S N(0, 4;'CeA;Y) for k=1,...,K,,

- Y —
where Ak = N_k ZieGg Qi,zAx Qi,zAx and

Binr = 1/2T3/2 Z ZZE Ax“z Z,-,Ae,—,).

ieGY s=1 1=1
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Based on (3.3), in order to verify Assumption B3(iii) we also need to show

(S21)  Vinr = —15r3 NW 7 ZZQ,ZMZUAS,HN(O Co), and
lEGO =1

(S22)  Rinr= 1/2T3/2 Z Z Z [Axisz, — E(Ax;,z) ] ziAey

tGGO s=1 =1
— E(Ax;z,ziAey) )
= Op(l)'

The first part is assured by a version of the CLT. Below, we first propose an
estimate of the bias Z,:]BkNT and then demonstrate (S2.2).

To correct the bias, we propose to obtain consistent estimates of A4, and
Binr, respectively, by

A’Zlk - Z Ql zAle zAx and

lEGk

BkNT 1/2T3/2 Z Z Z kg (t, 8)Ax;zi z: A&,

le(;ksltl

where Ag;, = Ay, — &’GkAxi, for all i e ka ku,(t,s) is as defined above:
ks (2, 8) = kjy, (|t —s]) and kY, (u) denotes the Bartlett kernel: &, (u) = (1—
|ul/M7r)1{|u| < M7}. Note that we also allow dynamic misspecification here. If
one is sure that the model is dynamically correctly specified in the sense that
E(A8i1|f'i,t71) = (0 where Jri,t—l = U(Agi,z—l 5 Ax; s Zity Agi,z—z, Axit—Z’ Zit—1y -« D,
one can use the one-sided kernel: ky, (¢, ) = kzle(S — t), where kzlw,-(”) =
(1 —u/M7)1{0 < u < Mr}. The bias-corrected C-Lasso estimator of o would
be

1 ~ o~
~(¢) ~ 1
o =0 — —Ak BkNT-

Note that Theorem 3.4 indicates that there is no need to consider bias correc-
tion for the post-Lasso estimator &g, .

Letx;=(x4,...,x;r) and ;= (&5, ..., &)’ . We add the following assump-
tion.

30bserve that &, —af = Op((NyT)™V>+T7!) and & ag, —a? = Op((NT)~/?). We recommend
using the post-Lasso estimator &g, .
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ASSUMPTION D2: (i) For each i =1,...,N, {(Ax;, z;, Agy) it =1,2,...}
is strong mixing with mixing coefficients {o;(- )} In addition, o;(1) < c,ip”
for some c¢,; < oo and p € (0,1), where N Zzec‘] c(zq DVIeD — 01) and

1 (q 1)/‘1 (1)

Nk lECO C
i) (x;, &) are independent across i € GO, where k =1, ..., K,.
74 k
(iii) max;, E||Ax;z}||* < C < oo and max;, E||z;Ae;||* < C < oo for some
q>1.
(iv) As (N, T) - oo, My — oo, M2/T — 0 and N,:]/ZT”2 X
ZieGg a;(Mp)?=V/C0 — ( foreach k =1, ..., K,.

Assumption D2(i)—(iv) parallels Assumption D1(i)—(iv). The major differ-
ence is that we do not need M2N,/T? — 0 in Assumption D2(iv) but require
q > 1 in Assumption D2(iii).

PROPOSITION S2.2: Suppose that the conditions of Theorem 3.4 hold. Suppose
Assumption D2 holds. Then A;'Byyr — ZZIB,{NT =op(1).

PROOF: NOtlng that 121/:13/(1\]]‘ — Z;lBkNT = (121/:1 — Z;l)BkNT + (121/:1 —
— 1~ — 1 - —
A, ) Bint — Benr) + A, (B~kNT __BkNT)a A, =0(Q), anc~1 Bint =O(/Ny/T),
it suffices to show that (1) Ak — Ak = OP(VNT) and (11) BkNT — BkNT = Op(l),

where vy = min(1, /T /Ny).
We first prove (i). Note that

Ak - Ak - =~ Z Ql zAle zZAx Z Ql zAle zAx

zeGk 1eG0
Z Z — Ny Z

( )Ql zAle zAx N N Q[ zAx Ql zAx
teGk ZGGO ki ¥k G0

EAk,l —f—Ak’z, say.

By Corollary 3.3, Ay, = OP(N’ ) = op(vy7). For any € > 0, we have by the
prOOf of Theorem 3. 2 P(”Ak 1“ > VNTE) < P(FkNT) + P(EkNT) = 0(1) It fol-

lows that A, — A, = 0p(vyr).
Now we prove (ii). We make the following decomposition:

BkNT - BkNT

1/2 T3 ZZZkMT(t S)AX,AZ Zi,Ag‘,-,

,EGksltl



| Binrall =

IDENTIFYING LATENT STRUCTURES IN PANEL DATA

1/2T3/2 Z Z Z E AxisZ;sZizASn)

ler)rltl

1/2T3/2 Z Z Z kMT(t S)AleZ;yZilAéit

,eG()sltl

1/2 T3/2 Z ZZE szsz ZnAe,-,) 4+ op(1)

,G(;Osltl

N1/2T3/2 Z Z Z kg (t, 8)Ax;z; zi (AE; — Agyp)

,e('Osltl

1/2 T3/2 ZZZkMT(t )

,gGOslll

X [Axmzf zilAe;; — ]E(Ax;sZ/- ZnAEn)]

T

N—1/2 _ N—1/2

+ 7o ZZZkMT(t $)E(Ax;z)ziAey;)

,e(‘({s 1 t=1
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1/2 32 Z ZZ 1 — kg, (2, S) (AxiszésznAé‘n) +op(1)

leGOslll

= Bint,1 + Binr2 + Binrs + Benra + 0p(1),

1/2 T3/2

,€G0v1t1

~ . 1
< (NeD)'?| o) - ag, “N_kW

Z Z Z ko, (8, 8)Ax;z; zi(Ax;,)

where the 0p(1) term arises due to the replacement of Gk by G{ and this can
be easily justified by using the uniform classification consistency result and ar-
guments as used in the proof of Theorem 2.5. We prove (ii) by demonstrating
that Biyrs=o0p(1) fors=1,2,3,4.

First, noting that A&, — Ae;, = () — g, ) Axi, g, — oy = Op((N:T)™'?),
and that Nk/1\7k =1+ o0p(1) by Corollary 3.3, we have

(af —ag,) H
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x>0 ) | Axuzza(Axy) |
ieG2 |s—t|<Mr

= OP(I)kaT,b

where buvr1 = 7 Yieat Yo eny 18%i2), 2 (Ax;,)'||. By the Markov inequal-
lty, kaT,l = OP(MT/T) It follows that ”BkNT,l“ = OP(MT/T) = Op(l) under
Assumption D2(iv).

For Binr,2, note that Byyr, = kaT,zN;/Z/N/l/Z = bint2(1+0p(1)), where

1 T T
bint2 = W Z ZZkMT(t’ s)
k iEG(,‘(] s=1 t=1

x [Axiz) ziAey, — B(Ax;zlziAey) ]

Let w be any p x 1 nonrandom vector such that ||w| = 1. Then E(w’biyr2) = 0.
By Assumption D2(ii)—(iv) and the Jensen inequality,

Var(w’kaT’z)

T T
= ﬁ ZVar[ZZkMT(t, s)
k

i€GY s=1 =1

X w’{Axisz;sz,-,As,-, — E(Ax,-sz;szi,As,-,)}i|

T T T T
< DTS Ky )k )
k

iecg s=1 =1 r=1 I=1

/

I !
x @'E[Ax;z} z:Aey Axyz 2z Asy |

Sﬁz Z Z |E[w Axisz) ziAey Axyz)zi Aey 0] |
’

i€GY Is—1|<Mr |r—l|<Mr
=0(M3;/T)=o0(1),
where the last equality follows from the fact that
|E[@ Axisz) ziAeiAxyzyzi Asy 0] |

< max{E|Ax;z, H4}1/2 X rnax{]EHz,-tAs,«t||4}1/2 <C<o0
is it

by Assumption D2(iii). It follows that Byyr, = 0p(1).
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By Corollary 3.3 and the Davydov inequality,

| Binsll
N -8
= T3/2(N 1/2+N—1/2

ZZZkMT(t $)E(Ax sz} ziAey;)

ieGY s=1 =1

IN, — N¢| /
T1/2N (AI; 1/2_:iN—1/2 {N T Z Z “IE Axl‘sziszilA‘c"”) ”}
k k

zeGU |[s—t|<Mr
= 0p(NPT71)O(1) = 0p(1).
By Assumption D2(i)—(iii) and the Davydov inequality,

1 Benr.all

NI/ZTW Z ZZ [1 =k, (2, ) |E(Ax;z) zieAgi)

lEGOAlll

8
N1/2T3/z Z Z a, s_tl)(zq e ”A XisZ st4 | zi A&l ag

zeGO |s—t|>Mr

< CN,:I/ZT“Z Z a;(My)2a=D/C — (1),

ieGY
This completes the proof of the proposition. Q.E.D.

With the above result in hand, we can readily show that
VN (@ - o) = [VNLT (& - o) — 4, Bovs]
+ (Nk/Nk)l/Z[Z; Byt — A;' Byt ]
+[1 = (N /N A, B
— [VNT (@~ a) ~ A, ' Bunr]
+0p(1) + 0p(N)O((Nk/T)'?)
= [VNiT (@& — o) — 4, Buxr] + 0p(1).

ThaF 1S, v/ Ny T(&,(f) — oY) has the desired limiting distribution centered on the
origin.
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Now, we demonstrate (S2.2). Let &;; = Ax;z), — E(Ax;z) and 1, = z;,Agy,.
Noting that E(¢;,) =0 and E(7;,) =0, we have

1 T T
Rinr = W Z Z Z[gisnit - E(fz‘s’f}ir)]

[gGg s=1 =1
1 T
= W Z Z[gimit - E(fn”flit)]
k ieGg =1

1
+ W Z Z [fis”f)ir - E(fis”’]it)]

ieGY 1=s<t=<T
1
t iR Z Z (€ — E(Eismin) ]
NT ieG 1<t<s<T

= Rinra + Rint2 + Renrz,  say.

It is trivial to show that Ryyr; = Op(T") by the Chebyshev and Davydov in-
equalities. For Ry, we have E(Ryy12) = 0 by construction, and by Assump-
tion D2(ii) and the Jensen inequality,

]E(RiNT,Z)
1
= W Z Var( Z [git] nitz - E(gitl nitz)])
k ieG(Ii 1<ti<tr<T
1

= N.T® Z Z Z E(&it, Mity it Mie,) = Sknt,  say.
k

ieGg 1<tj<tp<T 1<tz <t4<T

To bound S;y7, we can consider three subcases: (a) #{t, 5, 13, 14} = 4,
(b) #{t1, &, 5, 14} = 3, and (c) #{#, &, 5, 4} = 2, and use Siy7.4, SknT.H, and
Sint,c to denote the last summation when the time indices are restricted
to these three cases in order. Apparently, Syyr. = O(1/T) under Assump-
tion D2(iii). In case (a), without loss of generality (wlog) assume that 1 < <
t, < 1y < t; < T and denote Sy, as Sknr.. when the time indices are restricted
to this subcase. (Note that the other subcases can be analyzed analogously.)
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Let d. be the cth largest difference among ¢, — ¢; for j =1, 2, 3. Then

1
Sinta = N Z{ > + >

5602 1<y <ty<tz<ty<T,t—ty=d; 1<t <ty<tz<ty<T,13—tr=d;
+ E }E(fizl”flitzfiz37)iz4)
l§t1<t2<t3<[4§T,t47t3:d1
—_ ¢ (1) (1)
=Sivrat T Sinr,a2 T Sinrazs Sy
By the Davydov inequality and Assumption D2(i) and (iii),
SNTal — N ||§lt1||4q
IGGO H=1 = t1+max]>3{t] j 1} ta=tr+1 ty=t3+1

-1
X Mty it Mty lagyseei (1 — 1) T/

N T-3 T-2

i=1 y=1tH=H+1

N oo
N.T Z Z Toy (1) 0V = O(Tfl).

i=1 r=1

Similarly, we can show that Sgy,, = O(1/T) for s = 2,3. It follows that
S,S\),T’a =0(1/T) and S,S\),T’a =0(1/T) = o(1). In case (b), wlog assume that
t=hand 1<t <t <t <T and we use Sy, t0 Skyr, when the time in-
dices are restricted to this subcase. Then by the Davydov inequality and As-
sumption D2(i) and (iii),

{Sl(cl]\)/T,b Z Z | (Sitln?tz §if3)}

leGO 1<ty <th<z3<T

T3 Z Z || g”‘l nztz

i=1 1<t <th<tzs<T

1
a3l €ins lageui(ts — )\

_NTZZQ(T)(Q bl — O ( )

i=1 r=1

So Sinr.s = O(T™"). Consequently, Syyr = O(T") and Ryyr, = Op(T?) by
the Chebyshev inequality. By the same token, R y7.3 = Op(T~'/?). Thus we
have shown that Ry = Op(T~?) = 0p(1).
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S3. NUMERICAL ALGORITHM AND ADDITIONAL SIMULATION RESULTS
S3.1. Numerical Algorithm

In this section, we propose an iterative algorithm to obtain the PPL estimates
& and B in Section 2. A similar algorithm applies for PGMM estimation. Doc-
umented computer code is available online.

Step 1. Start with an initial value & = (&\”, ..., &) and B =B, ...

(0)) such that Z . ||B(0) A,({O)H # 0 for each k = 2, ..., K. Set the 1terat10n
indexr = 1. o)

A (r— A A

Step2. Givena" " =(a\",...,al "y and B =(B'",..., BV, we

first choose (B, ;) to minimize

O, (B = Oy () + Z“Bz—“l”l_lllﬁ“ b &,

k#1

. . A(r,l) ~(r
and obtain the updated estimate (8 & )) of (B, a;). Next we choose (8, as)
to minimize

(r,2,K)
QLrI\/'Ty)Ll (B: a2)

pypl .
= QOinr(B) + Nl E 18: — asll H'Blp,n & ” 1—[ Hﬂ(’ n &l H ”
i=1

k#1,2

. . A2 .
and obtain the updated estimate (8 ’ (’)) of (B8, a;). Repeat this procedure
until we choose (8, ax) to minimize

A(rk) ~(r)
Bi - ak )

. Ao
gNl;Ijl)(B, ag) = Qinr(B) + Nl ; 1B —

: : A"v’“ & A = (&,
and obtain the updated estimate (8 v ) of (B,ak). Leta” =(a;", ...,

N A " ~( k) R
&) and Q) = Zle 0! NkTKM (B i (”) Update the iteration index from r
tor+1.

Step 3. Repeat Step 2 until a convergence criterion is achieved, for example,
when

K
A<r) A(r—1>||2
@
A(r—1,K) r,K) k=1
QINT - QINT < €tol and < €tol»

K
A~ 1)|| +0.0001

PL

k=1
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where €, is some prescribed tolerance level (e.g., 0.0001). Define the fi-
nal iterative estimate of @ as & = (&ER) ey &;f)) for a sufficiently large R
such that the convergence criterion is met. Intuitively, individual i is classi-
fied to group G, if B = &; otherwise, B, is assigned to be the o that
is closest to some BAER’”, [=1,...,K. In either case, we can write the indi-

,,,,,

: AR, ~ (R)
I*(k) =argmin,, k1B, —a; |l

S3.2. Convexity, Choice of Initial Value, and Convergence of the Algorithm

The optimization of Qfy;" (B, ) is conducted on the (Np + p)-dimen-

sional parameter space for (B, «,). When N is nontrivial, this is a high-
dimensional optimization problem. Obviously, in the penalty term, By, ..., By
and a; are jointly convex, given [],c,., 187" — &’ | and [T, 18 — &
for each i=1,...,N. If Q, y7(B) is convex in B, then Qﬁ;(,kT’fj)l (B, ax), as the
summation of O, yr(B) and the penalty, is also convex in (8, o). Convexity
can substantially reduce the computational burden of high-dimensional opti-
mization.

A convex Q; yr(B) is common in panel data models. Convexity apparently
holds in the linear models in Examples 1 and 2. It also holds in the nonlinear
models in Example 3 with F(-) as the standard logistic or normal CDEF, and
in Example 4 after reparameterizing the original parameter (B;, w;, o2) into
(61, = Bi/ 02, 0y = w;/d?, 6; = 1/0?). We utilize the convexity throughout our
numerical works.

Given the convexity in each substep (7, k), the proposed algorithm consists
of a sequence of convex problems implemented in an iterative manner. In par-
ticular, the only difference between the standard Lasso and a single substep of
PPL is that Lasso shrinks the coefficients to a known center (zero), while the
center of PPL is determined in the convex programming. Thus, a PPL iteration
has the same computational complexity as Lasso, which is O(N°T) in our con-
text of panel linear regression (Efron, Hastie, and Johnstone (2004, p. 443)).
The computational cost of a single iteration is minimal.

Since the additive-multiplicative penalty is not jointly convex in all the pa-
rameters (8, a), we can take advantage of convexity in each substep for (8, ay)

but not simultaneously for (8, @). As a consequence of the non-convexity,

A . ~(0) A0
the sequence Q§ ,;,KT), r=1,..., R, depends on the initial value (aw), B ), and

Qﬁf,’f) might terminate at a local minimum but not a global minimum.

A natural initial value is to set (a)’ = 0)X_, and each B as the QMLE
from the ith individual time series (w1, . .., w;r). Denote this particular choice
(Bi““, a"') and we use it in all the simulations as well as applications, if not

explicitly stated otherwise. As we compare it with other possible choices, for
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FIGURE S1.—PLS and PGMM paths starting at different initial values.

example, (a\” =0)¥_ and (B = 1)¥,, starting at (8™, @) often makes the
algorithm converge in fewer iterations.

Although a formal investigation of the algorithm’s computational complexity
to attain the global optimum is beyond the scope of the paper, we explore
its numerical convergence and sensitivity to initial values through a numerical
example. We use the real data of savings rate in Section 5.1, and apply PLS
and PGMM given the number of groups and the tuning parameters selected
according to the IC. The left subgraph in Figure S1 shows the path of QX
r=1,..., R, and the right subgraph displays its PGMM counterpart. Each of
the ten paths is associated with a different starting point. First, the bold black
curve is the path that starts at (8™, a™*). Next, we perturb the initial value
to be ((BIM 4 ¢,)Y ,, @), where e, is a vector of p elements, each of which is
randomly drawn from Uniform(—1, 1) and is independent across i. This is a
substantial perturbation, in view of the magnitude of the estimates in Table III.
We use the perturbed initial values to generate the other nine curves.

Figure S1 illustrates the robustness of C-Lasso to initial values. We observe
in each subgraph that the criterion functions descend fast in the first few iter-
ations, and then the paths turn almost flat until the tolerance level is reached.
All paths converge to the same value of the criterion function in this experi-
ment.

S3.3. Additional Simulation Results

In this section, we carry out two more simulation exercises, one using PGMM
to estimate a static panel model with endogenous regressors as in DGP 4 be-
low, and the other using PLS to estimate the linear panel AR(1) in DGP 2.
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DGP 4 (Linear Static Panel With Endogeneity). We maintain the linear
panel structure model with two explanatory variables as in DGP 1, but the
first regressor is endogenous, as it is generated from the following underlying
reduced-form equation: x;; = 0.2u! + 0.5z, + 0.5z, + 0.5e,,, where z;,; and
Zirn» are two excluded instrumental variables, and the reduced-form error e,
and the structural-equation idiosyncratic shock ¢;, follow a bivariate normal
distribution:

Eir 0 1 03
(6) ()G 7)),
The second regressor x;, is exogenous, and (X;;, zi1, Zin) ~ 1.i.d. N(0, I3) is in-
dependent of (e;;, &;). All variables are independent across i and ¢. The econo-
metrician observes (i, Xi1, Xin, Zin, Ziz). The true coefficients of the three
groups are (0.2, 1.8), (1, 1) and (1.8, 0.2), respectively.

We report the statistics in Tables SI and SII, which correspond to Tables I
and II, respectively, in the main text. The choice of tuning parameters is ex-
actly the same as described in Section 4. When we compare PLS estimation
with PGMM in DGP 2, we find that the PLS works better in determining the
correct number of groups and in classifying the individual units. The 95% cov-
erage probabilities are comparable to those of PGMM when 7 = 50, but are
lower than PGMM when T is small. Similarly to PPL in DGP 3, the lower
coverage probabilities are caused by the bias. The analytical bias correction
removes the bias asymptotically, but the effect is limited when 7 is small, as is
shown in the oracle. The post-Lasso has larger coverage probability than the
oracle, as the estimated standard deviation is inflated by a few misclassified
units.

Table SIII reports the RMSE and bias of a; from post-Lasso and C-Lasso
under the true K, and the IC-determined K (or K for PGMM). These es-
timates are bias-corrected whenever necessary in the DGPs. For example,

TABLE SI
FREQUENCY OF SELECTING K =1, ...,5 GROUPS WHEN K|, =3

DGP 4 DGP 2 (PLS)
N T 1 2 3 4 5 1 2 3 4 5
100 15 0 0.022 0.902 0.076 0 0 0.106 0.894 0 0
100 25 0 0 0.966 0.028 0.006 0 0 1 0 0
100 50 0 0 0.996 0.004 0 0 0 1 0 0
200 15 0 0 0.940 0.058 0.002 0 0 1 0 0
200 25 0 0 0.950 0.046 0.004 0 0 1 0 0
200 50 0 0 0.994 0.006 0 0 0 1 0 0
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TABLE SII
CLASSIFICATION AND POINT ESTIMATION OF a; IN ADDITIONAL SIMULATIONS

Post-Lasso Oracle

% of Correct - -
N T RMSE Bias Coverage RMSE Bias Coverage

Classification
DGP4 100 15 0.8287 0.1583  0.0462 0.7850 0.0806 0.0018 0.9344
100 25 0.9281 0.0883  0.0195 0.8880 0.0617 0.0009 0.9380
100 50 0.9885 0.0517 0.0075 0.9406 0.0437 —0.0012 0.9422
200 15 0.8378 0.1155 0.0484 0.7860 0.0577 —0.0016 0.9454
200 25 0.9320 0.0643  0.0199 0.8742 0.0436 0.0001 0.9506
200 50 0.9881 0.0364 0.0074 0.9356 0.0311 —0.0005 0.9450

DGP2 100 15 0.8907 0.0413  0.0061  0.9148  0.0352 0.0041  0.8524
(PLS) 100 25 0.9511 0.0261 0.0041 0.9710 0.0241 0.0028  0.9076
100 50 0.9908 0.0160 0.0015  0.9908  0.0156 0.0013  0.9334
200 15 0.8949 0.0294 0.0064 0.9154  0.0253 0.0052  0.8576
200 25 0.9520 0.0188 0.0037  0.9714  0.0178 0.0036  0.8808
200 50 0.9912 0.0113 0.0017  0.9934  0.0111 0.0015  0.9282

the RMSE of PPL under K, is calculated as (% Zle Zfil % &,?1(1(0, A) —
) 1)*)"?, where s and S are the index and the total number of simulation repli-
cations, respectively, and N = Y™V 1{i € G\"(K, A,)} is the estimated num-
ber of units in the kth group. This quantity differs from its counterpart in Ta-
ble II as each group-specific estimate is weighted by N /N, instead of N;/N,
to take into account the uncertainty in classification. The bias is computed sim-
ilarly. The post-Lasso’s RMSE and bias under the known K are close to the
oracle. The performance of C-Lasso is in general comparable to that of post-
Lasso, although C-Lasso appears to have larger RMSE in the PGMM estima-
tion of DGP 2, where it does not enjoy the oracle property.

When K # K, we generalize the definition of the set of true group-specific
parameters. For K < K, we shrink @) = (a |, ..., a} ) into a K-element sub-
set @’(K). For K > K,, we augment a! by adding K — K elements choosing
from o) , ..., o} , so that the resulting @}(K) contains a!. Elements are elim-

inated or concatenated in each replication to fit @(K®, A;). In this scenario,
£ N

the RMSE is calculated as (% Zf:] hy T(&kyl(lé“), Ay) — ag,l(km)z)m.
According to the simulation, the effect of not knowing K, is noticeable when
T =15 in the linear models and T = 25 in the nonlinear model, but it does not
necessarily enlarge the RMSE, for the estimator under K, is also noisy when
T is small. The discrepancy of the RMSE and bias between K, and K (or K)
quickly vanishes when T grows.



TABLE SIII
ESTIMATION OF a; BY POST-LASSO AND C-LASsO UNDER K, AND K OR K

Post-Lasso C-Lasso
K=K, =K K=K, K=K Oracle
N T RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

DGP 1 100 15 0.0596 0.0108 0.0829 0.0092 0.0619 0.0133 0.0839 0.0120 0.0463 0.0012
100 25 0.0385 0.0019 0.0385 0.0019 0.0396 0.0040 0.0396 0.0040 0.0353 0.0001

100 50 0.0249 0.0000 0.0249 0.0000 0.0255 0.0011 0.0255 0.0011 0.0245 —0.0002

200 15 0.0434 0.0079 0.1373 0.0081 0.0457 0.0107 0.1353 0.0114 0.0324 —0.0013

200 25 0.0273 0.0015 0.0273 0.0015 0.0280 0.0040 0.0280 0.0040 0.0250 —0.0006

200 50 0.0174 —0.0001 0.0174 —0.0001 0.0181 0.0011 0.0181 0.0011 0.0171 —0.0002

DGP 2 100 15 0.0848 —0.0090 0.0787 —0.0016 0.1311 —0.0372 0.1188 —0.0250 0.0502 —0.0037
(PGMM) 100 25 0.0556 —0.0055 0.0561 —0.0051 0.1042 —0.0267 0.1045 —0.0255 0.0351 0.0011
100 50 0.0278 —0.0012 0.0278 —0.0012 0.0418 —0.0130 0.0418 —0.0130 0.0242 —0.0010

200 15 0.0712 —0.0141 0.0743 —0.0145 0.1491 —0.0399 0.1483 —0.0383 0.0352 —0.0017

200 25 0.0333 —0.0051 0.0333 —0.0051 0.0932 —0.0284 0.0932 —0.0284 0.0252 —0.0006

200 50 0.0193 —0.0014 0.0193 —0.0014 0.0277 —0.0134 0.0277 —0.0134 0.0164 0.0000

DGP 3 100 25 0.1722 0.0587 0.1516 0.0727 0.2154 0.0615 0.1641 0.0688 0.1077 0.0114
100 50 0.0853 0.0379 0.0878 0.0383 0.1178 0.0487 0.1191 0.0489 0.0752 0.0090

200 25 0.1342 0.0483 0.1401 0.0649 0.1826 0.0487 0.1441 0.0573 0.0821 0.0116

200 50 0.0632 0.0264 0.0632 0.0264 0.0948 0.0372 0.0948 0.0372 0.0573 0.0121

(Continues)
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TABLE SIII—Continued

Post-Lasso C-Lasso
K =K K=K K=K K=K Oracle
N T RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias
DGP 4 100 15 0.1691 0.0487 0.1803 0.0376 0.2148 0.1087 0.2102 0.0941 0.0806 0.0018
100 25 0.0724 0.0189 0.1217 0.0207 0.0882 0.0523 0.1323 0.0539 0.0617 0.0009
100 50 0.0450 0.0031 0.0645 0.0042 0.0532 0.0204 0.0707 0.0215 0.0437 —0.0012
200 15 0.1271 0.0512 0.1348 0.0466 0.1777 0.1128 0.1793 0.1074 0.0577 —0.0016
200 25 0.0513 0.0153 0.1392 0.0235 0.0720 0.0498 0.1485 0.0577 0.0436 0.0001
200 50 0.0314 0.0036 0.0549 0.0049 0.0399 0.0221 0.0602 0.0234 0.0311 —0.0005
DGP 2 100 15 0.0482 0.0081 0.0487 0.0065 0.0747 0.0297 0.0715 0.0254 0.0352 0.0041
(PLS) 100 25 0.0263 0.0043 0.0263 0.0043 0.0418 0.0189 0.0418 0.0189 0.0241 0.0028
100 50 0.0160 0.0016 0.0160 0.0016 0.0218 0.0085 0.0218 0.0085 0.0156 0.0013
200 15 0.0295 0.0064 0.0295 0.0064 0.0567 0.0293 0.0567 0.0293 0.0253 0.0052
200 25 0.0188 0.0037 0.0188 0.0037 0.0307 0.0174 0.0307 0.0174 0.0178 0.0036
200 50 0.0113 0.0017 0.0113 0.0017 0.0171 0.0084 0.0171 0.0084 0.0111 0.0015
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TABLE SIV
SUMMARY STATISTICS FOR THE SAVINGS DATA SET

Mean Median S.E. Min Max
Savings rate 22.099 20.790 8.833 —3.207 53.434
Inflation rate 7.724 4.853 15.342 —3.846 293.679
Real interest rate 7.422 5.927 10.062 —63.761 93.915
Per capita GDP growth rate 2.855 2.971 3.865 —17.545 14.060

S4. ADDITIONAL APPLICATION RESULTS
S4.1. More on Savings Rate Modeling and Classification

All data are downloaded from the World Bank.* We extract all countries
with all the variables in (5.1) available. Using the time span 1995-2010, we
were able to construct a balanced panel of 57 countries. We remove one out-
lier, Bulgaria, whose 1997 economic collapse produced hyperinflation in the
CPI that significantly distorted the overall mean and the standard deviation. In
total, we collect 56 countries. The summary statistics are shown in Table SIV.

In the implementation, we scale-normalize all the variables for each indi-
vidual unit to guarantee that the coefficients are comparable. Moreover, in
PGMM we use Ay,_, and a constant as two excluded IVs. Although the con-
stant is uncorrelated with the endogenous variable, adding it here stabilizes the
post-Lasso estimation in finite samples.

Table SV displays the group membership. The country names in bold are the
47 coincidences of PLS and PGMM classification out of the total 56 countries.

S4.2. More on the Civil War Application

The replication data of Fearon and Laitin (2003) can be downloaded from
Fearon’s personal web page.’ The data span from 1945 to 1998, but the panel
is highly unbalanced. Following Collier and Hoeffler (2004), Djankov and
Reynal-Querol (2010), and Blattman and Miguel (2010), we choose 1960 as
the starting year to generate a balanced panel of N = 38, as many countries’
civil war incidence is always 0 or 1 between 1960 and 1998.

In the regression, the dependent variable is the civil war incidence, and the
explanatory variables are the lagged civil war incidence, the one-period differ-
ence of log GDP per capita, and the one-period difference of log population.
Moreover, in view of the natural scaling of the binary variable, we keep the

“http://data.worldbank.org/data-catalog/world-development-indicators.

Shttps://www.stanford.edu/group/fearon-research/cgi-bin/wordpress/wp-content/uploads/
2013/10/apsrO3repdata.zip.

®The original data end at 1999, but no population information is provided for any country in
the last year.


http://data.worldbank.org/data-catalog/world-development-indicators
https://www.stanford.edu/group/fearon-research/cgi-bin/wordpress/wp-content/uploads/2013/10/apsr03repdata.zip
https://www.stanford.edu/group/fearon-research/cgi-bin/wordpress/wp-content/uploads/2013/10/apsr03repdata.zip
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TABLE SV
ESTIMATED GROUP MEMBERSHIP

PLS

PGMM

Group 1: (31 countries) Armenia, Australia,
Bahamas, Belarus, Bolivia, Botswana, Cape
Verde, China, Czech, Guatemala, Honduras,
Hungary, Indonesia, Israel, Italy, Japan, Jordan,
Latvia, Malawi, Malaysia, Mauritius, Mexico,
Mongolia, Panama, Paraguay, Philippines,
Romania, South Africa, Sri Lanka, Thailand,
Ukraine

Group 2: (25 countries) Bangladesh, Canada,
Costa Rica, Dominican, Egypt, Guyana,
Iceland, India, Kenya, Korea (Rep.), Lithuania,
Malta, Netherlands, Papua New Guinea, Peru,

Group 1: (36 countries) Armenia, Australia,
Bahamas, Belarus, Bolivia, Botswana, Cape
Verde, China, Czech, Egypt, Honduras,
Hungary, India, Indonesia, Israel, Italy, Japan,
Jordan, Kenya, Latvia, Malawi, Malaysia,
Malta, Mauritius, Mexico, Panama, Paraguay,
Philippines, Romania, South Africa, Sri Lanka,
Swaziland, Switzerland, Thailand, Ukraine,
United Kingdom

Group 2: (20 countries) Bangladesh, Canada,
Costa Rica, Dominican Republic, Guatemala,
Guyana, Iceland, Korea (Rep.), Lithuania,
Mongolia, Netherlands, Papua New Guinea,

Russian, Singapore, Swaziland, Switzerland,
Syrian, Tanzania, Uganda, United Kingdom,
United States, Uruguay

Peru, Russian, Singapore, Syrian, Tanzania,
Uganda, United States, Uruguay

original dependent variable and the lagged dependent variable. For the other
two continuously distributed variables, we follow the practice as in the savings
rate application to scale-normalize each time series by the individual sample
standard deviation. To ensure that the estimated coefficients are comparable,
we further multiply these two scale-normalized variables by the overall stan-
dard deviation of the lagged dependent variable so that all the explanatory
regressors are of the same scale. Furthermore, the Probit regressions for the
individual time series are unstable in those countries with only one or two in-
cidences. Therefore, the C-Lasso initial values are set as the pooled FE Probit
coefficient estimates.

The summary statistics are displayed in Table SVI. Membership is reported
under “high-occurrence” and “low-occurrence” groups with results as follows.

High-occurrence group (23 countries): Guatemala, Peru, Argentina, Mali,
Senegal, Chad, Congo (Dem.), Congo (Rep.), Somalia, Morocco, Sudan,

TABLE SVI
SUMMARY STATISTICS FOR THE CIVIL WAR DATA SET

Mean Median S.E. Min Max
Civil war incidence 0.352 0 0.478 0 1
GDP per capita growth 0.020 0.024 0.040 —0.811 0.306
Population growth 0.012 0.015 0.076 —0.507 0.661
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TABLE SVII
SUMMARY STATISTICS FOR THE DEMOCRACY DATA SET

Mean Median S.E. Min Max

Democracy index 0.5760 0.6667 0.3712 0 1
GDP per capita (in logarithm) 8.2981 8.3039 1.0685 6.0937 10.4450

Turkey, Iraq, Lebanon, Afghanistan, China, Pakistan, Sri Lanka, Nepal, Cam-
bodia, Laos, Philippines, Indonesia.

Low-occurrence group (15 countries): Haiti, Dominican Republic, El Sal-
vador, Nicaragua, United Kingdom, Yugoslavia, Cyprus, Russia, Liberia, Nige-
ria, Central African Republic, Ethiopia, South Africa, Iran, Jordan.

S4.3. Linear Dynamic Modeling of Democracy

In this section, we use the data provided by Bonhomme and Manresa (2015)
to revisit the link between income growth and democracy across countries. Fol-
lowing BM’s Equation (22), we specify a linear dynamic model, where the de-
pendent variable is a country’s democracy index (measured by Freedom House
indicator between 0 (the lowest) and 1 (the highest)), and the explanatory vari-
ables are the first-order lagged democracy index and the income (measured by
the logarithm of GDP per capita).

The data set contains a balanced panel of 84 countries and 8 periods at a
five-year interval over 1965-2000. The summary statistics are reported in Ta-
ble SVII. We use PLS to estimate the model in this short panel. Many de-
veloped countries, such as the United States or United Kingdom, kept their
democracy index at the highest level throughout the time. Due to the lack of
within-group variation in these countries, we scale-normalize each variable by
its pooled standard deviation. This standardization makes sure that the pa-
rameter y;_; can still be interpreted as the autoregressive coefficient, and the
magnitude is comparable with the income coefficient.

Following practice in the simulation, the IC with pyyr = %(N T)~'% picks
out K =3 and ¢,, = 1.20 in all combinations of K =1,...,5 and ¢,, in a ge-
ometrically increasing sequence of 10 points in (0.2, ...,2). Under K =3 and
¢y, = 1.20, C-Lasso categorizes the 84 countries into the following groups:

Group 1 (30 countries): Belgium, Bolivia, Brazil, Canada, Dominican Re-
public, Ecuador, El Salvador, Finland, Guatemala, Guinea, Iceland, Indone-
sia, Italy, Japan, Jordan, Luxembourg, Mali, Morocco, Nepal, Panama, Peru,
Philippines, Portugal, Romania, South Africa, Thailand, Turkey, United King-
dom, Uruguay, Venezuela.

Group 2 (36 countries): Algeria, Argentina, Australia, Austria, Barbados,
Burkina Faso, Burundi, Cameroon, Chile, China, Colombia, Costa Rica, Cote
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TABLE SVIII
PLS ESTIMATION RESULTS?*

PLS

Pooled FE Group 1 Group 2 Group 3

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Lagged democracy 0.4993* 0.0491 0.5141** 0.0643 0.0954  0.0733 —0.0543  0.0521
Income 0.2552** 0.0489 0.6545* 0.0930 0.1550™* 0.0448 —0.5542** 0.0860

4Note: *** 1% significant, ** 5% significant, * 10% significant.

d’Ivoire, Denmark, Egypt, France, Gabon, Ghana, Greece, India, Iran, Is-
rael, Jamaica, Kenya, Malawi, Malaysia, Mexico, Nigeria, Norway, Paraguay,
Rwanda, Spain, Sweden, Togo, Trinidad and Tobago, United States.

Group 3 (18 countries): Benin, Chad, Congo (Rep.), Honduras, Ireland,
Korea (Rep.), Madagascar, Netherlands, New Zealand, Nicaragua, Niger, Sri
Lanka, Switzerland, Syrian, Tanzania, Tunisia, Uganda, Zambia.

The post-Lasso and pooled FE estimates are shown in Table SVIII. We
focus on the coefficient for income. The common FE coefficient is positive
and significant. The positive effect is echoed by Groups 1 and 2, but contrasts
with Group 3, which consists mainly of low-income and low-democracy nations
combined with a few selected OECD countries. OECD countries such as Ire-
land, Netherlands, New Zealand, and Switzerland maintained their democracy
index at 1 throughout the sample period. The lack of variation in the depen-
dent variable makes them uninformative about the income coefficient.
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